""" visualization.py Routines for plotting VQE results and molecular visualization using Plotly """ import plotly.graph_objects as go import numpy as np import logging import json # Configure logging # Set root logger to DEBUG level logging.getLogger().setLevel(logging.DEBUG) # Configure module logger logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # Create handlers with DEBUG level console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) file_handler = logging.FileHandler('molecule_creation.log') file_handler.setLevel(logging.DEBUG) # Create and set formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler.setFormatter(formatter) file_handler.setFormatter(formatter) # Add handlers to logger logger.addHandler(console_handler) logger.addHandler(file_handler) # Atom display properties - Enhanced colors for better visibility ATOM_COLORS = { 'H': '#E8E8E8', # Light gray - more visible than pure white 'Be': '#42F5EC', # Bright turquoise 'Li': '#FF34B3', # Hot pink 'B': '#FFB347', # Pastel orange 'C': '#808080', # Classic gray 'N': '#4169E1', # Royal blue 'O': '#FF4500', # Orange red 'F': '#DAA520', # Goldenrod 'Ne': '#FF1493', # Deep pink } # Physical atomic radii in Ångströms (Å) ATOM_RADII = { "H": 0.25, "He": 0.31, "Li": 1.45, "Be": 1.05, "B": 0.85, "C": 0.70, "N": 0.65, "O": 0.60, "F": 0.50, "Ne": 0.38, } # Use atomic radii directly for sizes (they're already in Å) ATOM_SIZES = ATOM_RADII # Bond display properties BOND_STYLE = dict( color='#2F4F4F', # Dark slate gray width=8, # Thicker for better visibility dash='solid' # Solid lines for bonds ) def format_molecule_params(molecule_data: dict) -> str: """ Format molecule parameters into a readable HTML string. Args: molecule_data: Dictionary containing molecule parameters Returns: HTML formatted string of parameters """ try: # Get GPU time in minutes gpu_minutes = molecule_data.get('GPU_time', 60) / 60 # Create a formatted HTML string with molecule parameters params_html = f"""

Molecule Parameters:

""" return params_html except Exception as e: logger.error(f"Error formatting molecule parameters: {e}") return "
Error: Could not format molecule parameters
" def create_molecule_viewer(molecule_id: str, scale_factor: float) -> go.Figure: """ Create an enhanced 3D visualization of the molecule using Plotly. Uses actual atomic radii for sizing and bond determination. Renders atoms as actual spheres using Mesh3d to maintain physical units (Ångströms). Args: molecule_id: Molecule identifier (e.g., "H2") scale_factor: Factor to scale the molecule geometry by (1.0 = original size) Returns: Plotly Figure object with 3D molecule visualization """ logger.info(f"Creating enhanced 3D Plotly view for {molecule_id} with scale_factor={scale_factor}") try: # Load molecule data with open('molecules.json', 'r') as f: molecules = json.load(f) if molecule_id not in molecules: logger.error(f"Unknown molecule {molecule_id}") return go.Figure() molecule_data = molecules[molecule_id] if 'geometry_template' not in molecule_data: logger.error(f"No geometry template found for {molecule_id}") return go.Figure() geometry = molecule_data['geometry_template'] # Scale geometry positions scaled_geometry = [] for atom in geometry: symbol = atom[0] pos = [coord * scale_factor for coord in atom[1]] scaled_geometry.append([symbol, pos]) # Create figure fig = go.Figure() # Function to create sphere mesh points def create_sphere(radius, center, resolution=20): phi = np.linspace(0, 2*np.pi, resolution) theta = np.linspace(-np.pi/2, np.pi/2, resolution) phi, theta = np.meshgrid(phi, theta) x = center[0] + radius * np.cos(theta) * np.cos(phi) y = center[1] + radius * np.cos(theta) * np.sin(phi) z = center[2] + radius * np.sin(theta) return x, y, z # Add atoms as actual spheres for atom in scaled_geometry: symbol = atom[0] pos = atom[1] radius = ATOM_RADII.get(symbol, 0.5) color = ATOM_COLORS.get(symbol, '#808080') # Create sphere mesh x, y, z = create_sphere(radius, pos) # Add sphere fig.add_trace(go.Surface( x=x, y=y, z=z, colorscale=[[0, color], [1, color]], showscale=False, opacity=0.85, hoverinfo='text', hovertext=f"{symbol} at ({pos[0]:.2f}, {pos[1]:.2f}, {pos[2]:.2f})", name=symbol )) # Add atom label fig.add_trace(go.Scatter3d( x=[pos[0]], y=[pos[1]], z=[pos[2]], mode='text', text=[symbol], textposition='middle center', textfont=dict( size=18, # Increased from 14 color='#1A1A1A', # Dark charcoal instead of black family='Arial Black' ), showlegend=False )) # Add bonds between atoms positions = np.array([atom[1] for atom in scaled_geometry]) symbols = [atom[0] for atom in scaled_geometry] for i in range(len(symbols)): for j in range(i + 1, len(symbols)): # Calculate distance between atoms dist = np.linalg.norm(positions[i] - positions[j]) # Add bond if distance is less than sum of atomic radii plus a small tolerance radii_sum = (ATOM_RADII.get(symbols[i], 0.5) + ATOM_RADII.get(symbols[j], 0.5)) * 1.3 if dist <= radii_sum * scale_factor: fig.add_trace(go.Scatter3d( x=[positions[i, 0], positions[j, 0]], y=[positions[i, 1], positions[j, 1]], z=[positions[i, 2], positions[j, 2]], mode='lines', line=BOND_STYLE, hoverinfo='none', showlegend=False )) # Update layout for better visualization fig.update_layout( scene=dict( aspectmode='data', xaxis=dict(showspikes=False, showbackground=False, showticklabels=False, title=''), yaxis=dict(showspikes=False, showbackground=False, showticklabels=False, title=''), zaxis=dict(showspikes=False, showbackground=False, showticklabels=False, title=''), camera=dict( up=dict(x=0, y=1, z=0), center=dict(x=0, y=0, z=0), eye=dict(x=1.5, y=1.5, z=1.5) ) ), margin=dict(l=0, r=0, t=0, b=0), showlegend=False, width=600, height=600, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) return fig except Exception as e: logger.error(f"Failed to create molecule viewer: {e}", exc_info=True) return go.Figure() def plot_convergence(results): """ Create a convergence plot from VQE iteration history using Plotly. Returns Plotly figure Args: results: Dictionary containing VQE results including history of energy values, or list of energy values directly """ logger.info(f"Plotting convergence with results type: {type(results)}") # Extract iteration numbers and energies iterations = [] energies = [] # Handle different input formats if isinstance(results, dict): history = results.get('history', []) else: history = results logger.info(f"History type: {type(history)}, length: {len(history)}") # Handle both dictionary entries and direct energy values for i, entry in enumerate(history): if isinstance(entry, dict): try: iterations.append(entry.get('iteration', i)) energies.append(entry['energy']) except Exception as e: logger.warning(f"Skipping invalid entry {i}: {str(e)}") continue else: try: iterations.append(i) energies.append(float(entry)) except (ValueError, TypeError) as e: logger.warning(f"Skipping invalid entry {i}: {str(e)}") continue if not iterations or not energies: raise ValueError("No valid iteration data found in results") # Create Plotly figure fig = go.Figure() # Add energy convergence line fig.add_trace(go.Scatter( x=iterations, y=energies, mode='lines+markers', name='Energy', line=dict(color='blue', width=2), marker=dict(size=8) )) # Add final energy line if available final_energy = None if isinstance(results, dict) and 'final_energy' in results: try: final_energy = float(results['final_energy']) except (ValueError, TypeError): pass if final_energy is None and energies: final_energy = energies[-1] if final_energy is not None: fig.add_hline( y=final_energy, line_dash="dash", line_color="red", annotation_text=f"Final Energy: {final_energy:.6f}", annotation_position="bottom right" ) # Update layout fig.update_layout( title='VQE Convergence', xaxis_title='Iteration', yaxis_title='Energy (Hartree)', showlegend=True, hovermode='x', width=800, height=600, template='plotly_white' ) return fig