Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,126 +1,115 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
|
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
from sklearn.manifold import TSNE
|
6 |
-
from sklearn.cluster import
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
8 |
import io
|
9 |
from huggingface_hub import InferenceClient
|
10 |
|
11 |
-
#
|
12 |
-
file_path = 'symbipredict_2022_filtered.csv'
|
13 |
df = pd.read_csv(file_path)
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
model_path = "all-MiniLM-L6-v2" # Ensure this directory is uploaded to the Space
|
17 |
-
model = SentenceTransformer(model_path)
|
18 |
-
|
19 |
-
# Embed vectors
|
20 |
-
embedding_arr = model.encode(df['symptoms'])
|
21 |
-
|
22 |
-
# Apply K-Means with the optimal number of clusters (41 clusters)
|
23 |
optimal_n_clusters = 41
|
24 |
-
kmeans =
|
|
|
|
|
25 |
kmeans_labels = kmeans.fit_predict(embedding_arr)
|
26 |
|
27 |
-
#
|
28 |
-
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
|
|
32 |
|
33 |
-
#
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
tsne = TSNE(n_components=2, perplexity=30, n_iter=1000, random_state=42)
|
44 |
-
embedding_tsne = tsne.fit_transform(combined_embeddings)
|
45 |
-
|
46 |
-
# Separate the transformed query embedding from the rest
|
47 |
-
embedding_tsne_query = embedding_tsne[-1]
|
48 |
-
embedding_tsne = embedding_tsne[:-1]
|
49 |
-
|
50 |
-
# Plot data along t-SNE components with the query
|
51 |
-
plt.figure(figsize=(14, 10))
|
52 |
-
plt.rcParams.update({'font.size': 16})
|
53 |
-
plt.grid()
|
54 |
-
|
55 |
-
# Use a colormap for different clusters
|
56 |
-
cmap = plt.get_cmap('tab20', optimal_n_clusters)
|
57 |
-
|
58 |
-
# Highlight the cluster to which the query embedding belongs
|
59 |
-
query_cluster = kmeans.predict(query_embedding.reshape(1, -1))[0]
|
60 |
-
highlight_cluster = query_cluster
|
61 |
-
|
62 |
-
c = 0
|
63 |
-
for prognosis in df['prognosis'].unique():
|
64 |
-
idx = np.where(df['prognosis'] == prognosis)
|
65 |
-
if kmeans.predict(embedding_arr[idx])[0] == highlight_cluster:
|
66 |
-
plt.scatter(embedding_tsne[idx, 0], embedding_tsne[idx, 1], c=[cmap(c)] * len(idx[0]), edgecolor='black', linewidth=1, label=f'{prognosis} (Cluster {highlight_cluster})')
|
67 |
-
else:
|
68 |
-
plt.scatter(embedding_tsne[idx, 0], embedding_tsne[idx, 1], c=[cmap(c)] * len(idx[0]), label=prognosis)
|
69 |
-
c = c + 1 / len(df['prognosis'].unique())
|
70 |
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
#
|
|
|
|
|
80 |
buf = io.BytesIO()
|
81 |
-
plt.savefig(buf, format='png')
|
82 |
buf.seek(0)
|
83 |
-
|
84 |
-
|
85 |
-
# Generate the text response using the Inference Client
|
86 |
-
messages = [{"role": "system", "content": system_message}]
|
87 |
-
for user_msg, bot_msg in history:
|
88 |
-
if user_msg:
|
89 |
-
messages.append({"role": "user", "content": user_msg})
|
90 |
-
if bot_msg:
|
91 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
92 |
-
messages.append({"role": "user", "content": message})
|
93 |
-
|
94 |
-
response_text = ""
|
95 |
-
for message in client.chat_completion(
|
96 |
-
messages,
|
97 |
-
max_tokens=max_tokens,
|
98 |
-
stream=True,
|
99 |
-
temperature=temperature,
|
100 |
-
top_p=top_p,
|
101 |
-
):
|
102 |
-
token = message.choices[0].delta.content
|
103 |
-
response_text += token
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
#
|
111 |
demo = gr.ChatInterface(
|
112 |
respond,
|
113 |
additional_inputs=[
|
114 |
-
gr.Textbox(value="
|
115 |
-
gr.Slider(
|
116 |
-
gr.Slider(
|
117 |
-
gr.Slider(
|
118 |
-
minimum=0.1,
|
119 |
-
maximum=1.0,
|
120 |
-
value=0.95,
|
121 |
-
step=0.05,
|
122 |
-
label="Top-p (nucleus sampling)",
|
123 |
-
),
|
124 |
]
|
125 |
)
|
126 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import matplotlib
|
5 |
+
matplotlib.use('Agg')
|
6 |
import matplotlib.pyplot as plt
|
7 |
from sklearn.manifold import TSNE
|
8 |
+
from sklearn.cluster import MiniBatchKMeans
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
+
from umap import UMAP
|
11 |
+
from joblib import Parallel, delayed
|
12 |
+
from functools import lru_cache
|
13 |
import io
|
14 |
from huggingface_hub import InferenceClient
|
15 |
|
16 |
+
# ---- Precomputed Elements ----
|
17 |
+
file_path = 'symbipredict_2022_filtered.csv'
|
18 |
df = pd.read_csv(file_path)
|
19 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
20 |
+
embedding_arr = model.encode(df['symptoms']).astype(np.float32)
|
21 |
|
22 |
+
# Clustering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
optimal_n_clusters = 41
|
24 |
+
kmeans = MiniBatchKMeans(n_clusters=optimal_n_clusters,
|
25 |
+
batch_size=1024,
|
26 |
+
random_state=42)
|
27 |
kmeans_labels = kmeans.fit_predict(embedding_arr)
|
28 |
|
29 |
+
# Dimensionality Reduction
|
30 |
+
umap = UMAP(n_components=2, random_state=42)
|
31 |
+
embedding_umap = umap.fit_transform(embedding_arr)
|
32 |
|
33 |
+
# Precomputed Mappings
|
34 |
+
cluster_prognosis_map = (df.groupby('cluster')['prognosis']
|
35 |
+
.unique().to_dict())
|
36 |
|
37 |
+
# ---- Cached Functions ----
|
38 |
+
@lru_cache(maxsize=100)
|
39 |
+
def cached_encode(text):
|
40 |
+
return model.encode([text], convert_to_numpy=True)[0]
|
41 |
|
42 |
+
# ---- Optimized Plotting ----
|
43 |
+
fig = plt.figure(figsize=(14, 10))
|
44 |
+
ax = fig.add_subplot(111)
|
45 |
+
cmap = plt.get_cmap('tab20', optimal_n_clusters)
|
46 |
+
|
47 |
+
def create_plot(message, query_embedding):
|
48 |
+
ax.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Plot all points
|
51 |
+
ax.scatter(embedding_umap[:, 0], embedding_umap[:, 1],
|
52 |
+
c=kmeans_labels, cmap=cmap,
|
53 |
+
edgecolor='k', linewidth=0.5, alpha=0.7)
|
54 |
|
55 |
+
# Plot query
|
56 |
+
query_umap = umap.transform(query_embedding.reshape(1, -1))
|
57 |
+
ax.scatter(query_umap[:, 0], query_umap[:, 1],
|
58 |
+
c='red', marker='X', s=200,
|
59 |
+
label=f'Query: {message}')
|
60 |
|
61 |
+
# Finalize plot
|
62 |
+
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
63 |
+
ax.set_title("Medical Condition Clustering")
|
64 |
buf = io.BytesIO()
|
65 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
66 |
buf.seek(0)
|
67 |
+
return buf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# ---- Response Function ----
|
70 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
71 |
|
72 |
+
async def respond(message, history, system_message, max_tokens, temperature, top_p):
|
73 |
+
try:
|
74 |
+
# Encoding
|
75 |
+
query_embedding = cached_encode(message)
|
76 |
+
|
77 |
+
# Cluster prediction
|
78 |
+
query_cluster = kmeans.predict(query_embedding.reshape(1, -1))[0]
|
79 |
+
|
80 |
+
# Parallel plot generation
|
81 |
+
plot_buf = await asyncio.to_thread(
|
82 |
+
create_plot, message, query_embedding
|
83 |
+
)
|
84 |
+
|
85 |
+
# Async LLM response
|
86 |
+
llm_response = await client.chat_completion(
|
87 |
+
[{"role": "user", "content": message}],
|
88 |
+
max_tokens=max_tokens,
|
89 |
+
stream=False,
|
90 |
+
temperature=temperature,
|
91 |
+
top_p=top_p
|
92 |
+
)
|
93 |
+
|
94 |
+
# Combine responses
|
95 |
+
full_response = (
|
96 |
+
f"{llm_response}\n\nCluster {query_cluster} contains: "
|
97 |
+
f"{', '.join(cluster_prognosis_map[query_cluster])}"
|
98 |
+
)
|
99 |
+
|
100 |
+
return full_response, plot_buf
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error: {str(e)}", None
|
104 |
|
105 |
+
# ---- Gradio Interface ----
|
106 |
demo = gr.ChatInterface(
|
107 |
respond,
|
108 |
additional_inputs=[
|
109 |
+
gr.Textbox(value="Medical diagnosis assistant", label="System Role"),
|
110 |
+
gr.Slider(512, 2048, value=512, step=128, label="Max Tokens"),
|
111 |
+
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
112 |
+
gr.Slider(0.5, 1.0, value=0.95, step=0.05, label="Top-p")
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
]
|
114 |
)
|
115 |
|