Upload 3 files
Browse files- Dockerfile +16 -19
- app.py +11 -65
- requirements.txt +8 -8
Dockerfile
CHANGED
@@ -1,33 +1,30 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# Install system dependencies
|
4 |
-
RUN apt-get update && apt-get install -y --no-install-recommends \
|
5 |
-
build-essential \
|
6 |
-
git \
|
7 |
-
&& rm -rf /var/lib/apt/lists/*
|
8 |
|
|
|
9 |
WORKDIR /code
|
10 |
|
11 |
-
|
12 |
COPY ./requirements.txt /code/requirements.txt
|
13 |
|
14 |
-
|
15 |
-
RUN pip install --no-cache-dir --upgrade
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
RUN useradd -m user
|
20 |
USER user
|
21 |
|
22 |
-
|
23 |
ENV HOME=/home/user \
|
24 |
-
PATH=/home/user/.local/bin:$PATH
|
25 |
-
PYTHONUNBUFFERED=1
|
26 |
|
|
|
27 |
WORKDIR $HOME/app
|
28 |
|
29 |
-
|
30 |
COPY --chown=user . $HOME/app
|
31 |
|
32 |
-
|
33 |
-
CMD ["
|
|
|
1 |
+
## Use the official Python 3.9 image
|
2 |
+
FROM python:3.9
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
## Set the working directory to /code
|
5 |
WORKDIR /code
|
6 |
|
7 |
+
## Copy the requirements.txt file into the container at /code
|
8 |
COPY ./requirements.txt /code/requirements.txt
|
9 |
|
10 |
+
## Install the requirements from requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
+
|
13 |
+
## Set up a new user named "user"
|
14 |
+
RUN useradd user
|
15 |
|
16 |
+
## Switch to the "user" user
|
|
|
17 |
USER user
|
18 |
|
19 |
+
## Set home to the user's home directory
|
20 |
ENV HOME=/home/user \
|
21 |
+
PATH=/home/user/.local/bin:$PATH
|
|
|
22 |
|
23 |
+
## Set the working directory to the user's home directory
|
24 |
WORKDIR $HOME/app
|
25 |
|
26 |
+
## Copy the current directory contents into the container at $HOME/app and set the owner to "user"
|
27 |
COPY --chown=user . $HOME/app
|
28 |
|
29 |
+
## Start the FASTAPI app on port 7860
|
30 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,74 +1,20 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from fastapi import FastAPI, HTTPException
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
5 |
-
from peft import PeftModel, PeftConfig
|
6 |
|
7 |
-
#
|
8 |
-
logging.basicConfig(level=logging.INFO)
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
# Initialize FastAPI app
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
tokenizer = None
|
17 |
-
pipe = None
|
18 |
-
|
19 |
-
@app.on_event("startup")
|
20 |
-
async def load_model():
|
21 |
-
global model, tokenizer, pipe
|
22 |
-
|
23 |
-
try:
|
24 |
-
# Get Hugging Face token from environment variable
|
25 |
-
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
26 |
-
|
27 |
-
logger.info("Loading PEFT configuration...")
|
28 |
-
config = PeftConfig.from_pretrained("frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
|
29 |
-
|
30 |
-
# Debugging: Print the configuration
|
31 |
-
logger.info(f"Configuration: {config}")
|
32 |
-
|
33 |
-
logger.info("Loading base model...")
|
34 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
35 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
36 |
-
use_auth_token=hf_token
|
37 |
-
)
|
38 |
-
|
39 |
-
logger.info("Loading PEFT model...")
|
40 |
-
model = PeftModel.from_pretrained(base_model, "frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
|
41 |
-
|
42 |
-
logger.info("Loading tokenizer...")
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
44 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
45 |
-
use_auth_token=hf_token
|
46 |
-
)
|
47 |
-
|
48 |
-
logger.info("Creating pipeline...")
|
49 |
-
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
50 |
-
|
51 |
-
logger.info("Model, tokenizer, and pipeline loaded successfully.")
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Error loading model or creating pipeline: {e}")
|
54 |
-
raise
|
55 |
|
56 |
@app.get("/")
|
57 |
def home():
|
58 |
return {"message": "Hello World"}
|
59 |
|
|
|
60 |
@app.get("/generate")
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
output = pipe(text, max_length=100, num_return_sequences=1)
|
67 |
-
return {"output": output[0]['generated_text']}
|
68 |
-
except Exception as e:
|
69 |
-
logger.error(f"Error during text generation: {e}")
|
70 |
-
raise HTTPException(status_code=500, detail=f"Error during text generation: {str(e)}")
|
71 |
-
|
72 |
-
if __name__ == "__main__":
|
73 |
-
import uvicorn
|
74 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
4 |
+
# Create a new FASTAPI app instance
|
|
|
|
|
|
|
|
|
5 |
app = FastAPI()
|
6 |
|
7 |
+
# Initialize the text generation pipeline
|
8 |
+
pipe = pipeline("text2text-generation", model="juierror/text-to-sql-with-table-schema")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@app.get("/")
|
11 |
def home():
|
12 |
return {"message": "Hello World"}
|
13 |
|
14 |
+
# Define a function to handle the GET request at '/generate'
|
15 |
@app.get("/generate")
|
16 |
+
def generate(text: str):
|
17 |
+
# Use the pipeline to generate text from the given input text
|
18 |
+
output = pipe(text)
|
19 |
+
# Return the generated text in JSON response
|
20 |
+
return {"output": output[0]['generated_text']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
|
|
|
2 |
uvicorn[standard]==0.17.*
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
tokenizers>=0.14.0,<0.15.0
|
|
|
1 |
+
|
2 |
+
requests==2.27.*
|
3 |
uvicorn[standard]==0.17.*
|
4 |
+
sentencepiece==0.1.*
|
5 |
+
torch==1.11.*
|
6 |
+
|
7 |
+
|
8 |
+
fastapi==0.74.*
|
9 |
+
transformers==4.*
|
|