File size: 3,996 Bytes
90cd969
 
 
 
0b4e109
90cd969
 
 
 
 
 
 
 
 
 
 
 
 
549a722
443db8e
 
 
 
90cd969
d74d42e
90cd969
 
 
 
 
 
 
 
 
 
 
 
549a722
 
 
 
 
 
 
 
 
 
 
 
90cd969
 
549a722
 
90cd969
 
 
 
 
25352c2
90cd969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95cbd86
90cd969
 
 
 
 
 
443db8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f70ac9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import openai
from PyPDF2 import PdfReader
import fitz
import os
import gradio as gr

class HeadingsExtractor:

    def __init__(self):
        """
        Extract headings from a given paragraph using OpenAI's GPT-3.

        Args:
            contract_page (str): The paragraph from which headings need to be extracted.

        Returns:
            str: Extracted headings.
        """
        self.client=OpenAI()
        
    def file_output_fnn(self,file_path):
        file_path = file_path.name
        return file_path        

    def extract_headings(self,contract_page: str) -> str:

        """
        Extract headings from a given paragraph using OpenAI's GPT-3.

        Args:
            contract_page (str): The paragraph from which headings need to be extracted.

        Returns:
            str: Extracted headings.
        """
        try:
            #get response from openai api
            
            conversation = [
                            {"role": "system", "content": "You are a helpful assistant."},
                            {"role": "user", "content": f"""Extract Headings from given paragraph do not generate jsu extract the headings from paragraph.
                                    ```paragraph :{contract_page}```"""}
                        ]
            
            # Call OpenAI GPT-3.5-turbo
            chat_completion =self.client.chat.completions.create(
                model = "gpt-3.5-turbo",
                messages = conversation,
                max_tokens=1000,
                temperature=0
            )
            response = chat_completion.choices[0].message.content
            return response 

        except Exception as e:
            # If an error occurs during the key-value extraction process, log the error
            print(f"Error while extracting headings: {str(e)}")

    def extract_text(self,pdf_file_path: str) -> str:

        """
        Extract text from a PDF document and extract headings from each page.

        Args:
            pdf_file_path (str): Path to the PDF file to extract text from.

        Returns:
            str: Extracted headings from the PDF document.
        """
        try:
            # Open the multi-page PDF using PdfReader

            print("path",pdf_file_path)
            pdf = PdfReader(pdf_file_path.name)
            headings = ''
            # Extract text from each page and pass it to the process_text function
            for page_number in range(len(pdf.pages)):
                # Extract text from the page
                page = pdf.pages[page_number]
                text = page.extract_text()

                # Pass the text to the process_text function for further processing
                result = self.extract_headings(text)
                headings = headings + result
            return headings

        except Exception as e:
            # If an error occurs during the key-value extraction process, log the error
            print(f"Error while extracting text from PDF: {str(e)}")

    def gradio_interface(self):
        with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:    
            with gr.Row(elem_id = "col-container",scale=0.80):
              with gr.Column(elem_id = "col-container",scale=0.80):
                file1 = gr.File(label="File",elem_classes="filenameshow")
            
              with gr.Column(elem_id = "col-container",scale=0.20):  
                upload_button1 = gr.UploadButton(
                    "Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
                    elem_classes="uploadbutton")
                headings_btn = gr.Button("Get Headings",elem_classes="uploadbutton")
            
            with gr.Row(elem_id = "col-container",scale=0.60):    
                headings = gr.Textbox(label = "Headings")

        upload_button1.upload(self.file_output_fnn,upload_button1,file1)
        headings_btn.click(self.extract_text,upload_button1,headings)