Contract_Management / aggressive_content_finder.py
KarthickAdopleAI's picture
Update aggressive_content_finder.py
2fbb473 verified
raw
history blame
4.67 kB
from PyPDF2 import PdfReader
from openai import AzureOpenAI
import gradio as gr
import os
class AggressiveContentFinder:
"""
This class identifies and extracts aggressive terms in a contract document using OpenAI's GPT-3.
"""
def __init__(self):
"""
Initialize the AggressiveContentFinder with your OpenAI API key.
"""
# openai.api_type = os.getenv['api_type']
# openai.api_base = os.getenv['api_base']
# openai.api_version = os.getenv['api_version']
# openai.api_key = os.getenv['api_key']
pass
def _extract_aggressive_content(self, contract_text: str) -> str:
"""
Use OpenAI's GPT-3 to identify aggressive terms in the given contract text.
Args:
contract_text (str): Text extracted from the contract.
Returns:
str: Identified aggressive terms.
"""
try:
client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2023-07-01-preview",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
conversation = [
{"role": "system", "content": "You are a helpful Aggressive Terms Finder in Given Contract."},
{"role": "user", "content": f"""This is a contract document content. Your task is to identify aggressive terms like warning terms, penalties in the given contract:
```contract: {contract_text}```"""}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = client.chat.completions.create(
model = "ChatGPT",
messages = conversation,
max_tokens=1000,
temperature=0
)
response = chat_completion.choices[0].message.content
return response
except Exception as e:
print(f"An error occurred during text analysis: {str(e)}")
def get_aggressive_content(self, pdf_file_path: str):
"""
Extract text from a PDF document and identify aggressive terms.
Args:
pdf_file_path (str): Path to the PDF document.
Returns:
str: Identified aggressive terms in the contract document.
This method opens a multi-page PDF using PdfReader and iterates through each page. For each page, it extracts
the text and passes it to the _extract_aggressive_content method for further processing. The identified
aggressive terms are concatenated and returned. If any errors occur during PDF processing, they are logged for
debugging.
"""
try:
# Open the multi-page PDF using PdfReader
pdf = PdfReader(pdf_file_path.name)
aggressive_terms = ""
# Extract text from each page and pass it to the process_text function
for page_number in range(len(pdf.pages)):
# Extract text from the page
page = pdf.pages[page_number]
text = page.extract_text()
# Pass the text to the process_text function for further processing
aggressive_terms += self._extract_aggressive_content(text)
return aggressive_terms
except Exception as e:
print(f"An error occurred while processing the PDF document: {str(e)}")
def file_output_fnn(self,file_path):
file_path = file_path.name
return file_path
def gradio_interface(self):
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:
with gr.Row(elem_id = "col-container",scale=0.80):
# with gr.Column(elem_id = "col-container",scale=0.80):
# file1 = gr.File(label="File",elem_classes="filenameshow")
# with gr.Column(elem_id = "col-container",scale=0.20):
# upload_button1 = gr.UploadButton(
# "Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
# elem_classes="uploadbutton")
aggressive_content = gr.Button("Get Aggressive Content",elem_classes="uploadbutton")
with gr.Row(elem_id = "col-container",scale=0.60):
headings = gr.Textbox(label = "Aggressive Content")
# upload_button1.upload(self.file_output_fnn,upload_button1,file1)
aggressive_content.click(self.get_aggressive_content,[],headings)