Contract_Management / headings_extractor.py
Baskar2005's picture
Update headings_extractor.py
880a0de verified
raw
history blame
4.01 kB
from openai import OpenAI
from PyPDF2 import PdfReader
# import fitz
import os
import gradio as gr
class HeadingsExtractor:
def __init__(self):
"""
Extract headings from a given paragraph using OpenAI's GPT-3.
Args:
contract_page (str): The paragraph from which headings need to be extracted.
Returns:
str: Extracted headings.
"""
self.client=OpenAI()
def file_output_fnn(self,file_path):
file_path = file_path.name
return file_path
def extract_headings(self,contract_page: str) -> str:
"""
Extract headings from a given paragraph using OpenAI's GPT-3.
Args:
contract_page (str): The paragraph from which headings need to be extracted.
Returns:
str: Extracted headings.
"""
try:
#get response from openai api
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"""Extract Headings from given paragraph do not generate jsu extract the headings from paragraph.
```paragraph :{contract_page}```"""}
]
# Call OpenAI GPT-3.5-turbo
chat_completion =self.client.chat.completions.create(
model = "gpt-3.5-turbo",
messages = conversation,
max_tokens=1000,
temperature=0
)
response = chat_completion.choices[0].message.content
return response
except Exception as e:
# If an error occurs during the key-value extraction process, log the error
print(f"Error while extracting headings: {str(e)}")
def extract_text(self,pdf_file_path: str) -> str:
"""
Extract text from a PDF document and extract headings from each page.
Args:
pdf_file_path (str): Path to the PDF file to extract text from.
Returns:
str: Extracted headings from the PDF document.
"""
try:
# Open the multi-page PDF using PdfReader
print("path",pdf_file_path)
pdf = PdfReader(pdf_file_path.name)
headings = ''
# Extract text from each page and pass it to the process_text function
for page_number in range(len(pdf.pages)):
# Extract text from the page
page = pdf.pages[page_number]
text = page.extract_text()
# Pass the text to the process_text function for further processing
result = self.extract_headings(text)
headings = headings + result
return headings
except Exception as e:
# If an error occurs during the key-value extraction process, log the error
print(f"Error while extracting text from PDF: {str(e)}")
def gradio_interface(self):
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:
with gr.Row(elem_id = "col-container",scale=0.80):
with gr.Column(elem_id = "col-container",scale=0.80):
file1 = gr.File(label="File",elem_classes="filenameshow")
with gr.Column(elem_id = "col-container",scale=0.20):
upload_button1 = gr.UploadButton(
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
elem_classes="uploadbutton")
headings_btn = gr.Button("Get Headings",elem_classes="uploadbutton")
with gr.Row(elem_id = "col-container",scale=0.60):
headings = gr.Textbox(label = "Headings")
upload_button1.upload(self.file_output_fnn,upload_button1,file1)
headings_btn.click(self.extract_text,upload_button1,headings)