Spaces:
Running
Running
naveenvenkatesh
commited on
Commit
·
0e5d81d
1
Parent(s):
57c9413
Delete invoice_extractor.py
Browse files- invoice_extractor.py +0 -341
invoice_extractor.py
DELETED
@@ -1,341 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
-
import traceback
|
5 |
-
import torch
|
6 |
-
from docquery import pipeline
|
7 |
-
from docquery.document import load_bytes, load_document, ImageDocument
|
8 |
-
from docquery.ocr_reader import get_ocr_reader
|
9 |
-
from pdf2image import convert_from_path
|
10 |
-
|
11 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
-
|
13 |
-
# Initialize the logger
|
14 |
-
logging.basicConfig(filename="invoice_extraction.log", level=logging.DEBUG) # Create a log file
|
15 |
-
|
16 |
-
# Checkpoint for different models
|
17 |
-
CHECKPOINTS = {
|
18 |
-
"LayoutLMv1 for Invoices 🧾": "impira/layoutlm-invoices",
|
19 |
-
}
|
20 |
-
PIPELINES = {}
|
21 |
-
|
22 |
-
|
23 |
-
class InvoiceKeyValuePair():
|
24 |
-
|
25 |
-
"""
|
26 |
-
This class provides a utility to extract key-value pairs from invoices using LayoutLM.
|
27 |
-
"""
|
28 |
-
|
29 |
-
def __init__(self):
|
30 |
-
|
31 |
-
self.fields = {
|
32 |
-
"Vendor Name": ["Vendor Name - Logo?", "Vendor Name - Address?"],
|
33 |
-
"Vendor Address": ["Vendor Address?"],
|
34 |
-
"Customer Name": ["Customer Name?"],
|
35 |
-
"Customer Address": ["Customer Address?"],
|
36 |
-
"Invoice Number": ["Invoice Number?"],
|
37 |
-
"Invoice Date": ["Invoice Date?"],
|
38 |
-
"Due Date": ["Due Date?"],
|
39 |
-
"Subtotal": ["Subtotal?"],
|
40 |
-
"Total Tax": ["Total Tax?"],
|
41 |
-
"Invoice Total": ["Invoice Total?"],
|
42 |
-
"Amount Due": ["Amount Due?"],
|
43 |
-
"Payment Terms": ["Payment Terms?"],
|
44 |
-
"Remit To Name": ["Remit To Name?"],
|
45 |
-
"Remit To Address": ["Remit To Address?"],
|
46 |
-
}
|
47 |
-
self.model = list(CHECKPOINTS.keys())[0]
|
48 |
-
|
49 |
-
def ensure_list(self, x):
|
50 |
-
try:
|
51 |
-
# Log the function entry
|
52 |
-
logging.info(f'Entering ensure_list with x={x}')
|
53 |
-
|
54 |
-
# Check if 'x' is already a list
|
55 |
-
if isinstance(x, list):
|
56 |
-
return x
|
57 |
-
else:
|
58 |
-
# If 'x' is not a list, wrap it in a list and return
|
59 |
-
return [x]
|
60 |
-
except Exception as e:
|
61 |
-
# Log exceptions
|
62 |
-
logging.error("An error occurred:", exc_info=True)
|
63 |
-
return []
|
64 |
-
|
65 |
-
def construct_pipeline(self, task, model):
|
66 |
-
try:
|
67 |
-
# Log the function entry
|
68 |
-
logging.info(f'Entering construct_pipeline with task={task} and model={model}')
|
69 |
-
|
70 |
-
# Global dictionary to cache pipelines based on model checkpoint names
|
71 |
-
global PIPELINES
|
72 |
-
|
73 |
-
# Check if a pipeline for the specified model already exists in the cache
|
74 |
-
if model in PIPELINES:
|
75 |
-
# If it exists, return the cached pipeline
|
76 |
-
return PIPELINES[model]
|
77 |
-
try:
|
78 |
-
# Determine the device to use for inference (GPU if available, else CPU)
|
79 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
-
|
81 |
-
# Create the pipeline using the specified task and model checkpoint
|
82 |
-
ret = pipeline(task=task, model=CHECKPOINTS[model], device=device)
|
83 |
-
|
84 |
-
# Cache the created pipeline for future use
|
85 |
-
PIPELINES[model] = ret
|
86 |
-
|
87 |
-
# Return the constructed pipeline
|
88 |
-
return ret
|
89 |
-
except Exception as e:
|
90 |
-
# Handle exceptions and log the error message
|
91 |
-
logging.error("An error occurred:", exc_info=True)
|
92 |
-
return None
|
93 |
-
except Exception as e:
|
94 |
-
# Log exceptions
|
95 |
-
logging.error("An error occurred:", exc_info=True)
|
96 |
-
return None
|
97 |
-
|
98 |
-
def run_pipeline(self, model, question, document, top_k):
|
99 |
-
try:
|
100 |
-
# Log the function entry
|
101 |
-
logging.info(f'Entering run_pipeline with model={model}, question={question}, and document={document}')
|
102 |
-
|
103 |
-
# Use the construct_pipeline method to get or create a pipeline for the specified model
|
104 |
-
pipeline = self.construct_pipeline("document-question-answering", model)
|
105 |
-
|
106 |
-
# Use the constructed pipeline to perform question-answering on the document
|
107 |
-
# Pass the question, document context, and top_k as arguments to the pipeline
|
108 |
-
return pipeline(question=question, **document.context, top_k=top_k)
|
109 |
-
except Exception as e:
|
110 |
-
# Log exceptions
|
111 |
-
logging.error("An error occurred:", exc_info=True)
|
112 |
-
return None
|
113 |
-
|
114 |
-
def lift_word_boxes(self, document, page):
|
115 |
-
try:
|
116 |
-
# Log the function entry
|
117 |
-
logging.info(f'Entering lift_word_boxes with document={document} and page={page}')
|
118 |
-
|
119 |
-
# Extract the word boxes for the specified page from the document's context
|
120 |
-
return document.context["image"][page][1]
|
121 |
-
except Exception as e:
|
122 |
-
# Log exceptions
|
123 |
-
logging.error("An error occurred:", exc_info=True)
|
124 |
-
return []
|
125 |
-
|
126 |
-
def expand_bbox(self, word_boxes):
|
127 |
-
try:
|
128 |
-
# Log the function entry
|
129 |
-
logging.info(f'Entering expand_bbox with word_boxes={word_boxes}')
|
130 |
-
|
131 |
-
# Check if the input list of word boxes is empty
|
132 |
-
if len(word_boxes) == 0:
|
133 |
-
return None
|
134 |
-
|
135 |
-
# Extract the minimum and maximum coordinates of the word boxes
|
136 |
-
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
|
137 |
-
|
138 |
-
# Calculate the overall minimum and maximum coordinates
|
139 |
-
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
|
140 |
-
|
141 |
-
# Return the expanded bounding box as [min_x, min_y, max_x, max_y]
|
142 |
-
return [min_x, min_y, max_x, max_y]
|
143 |
-
except Exception as e:
|
144 |
-
# Log exceptions
|
145 |
-
logging.error("An error occurred:", exc_info=True)
|
146 |
-
return None
|
147 |
-
|
148 |
-
def normalize_bbox(self, box, width, height, padding=0.005):
|
149 |
-
try:
|
150 |
-
# Log the function entry
|
151 |
-
logging.info(f'Entering normalize_bbox with box={box}, width={width}, height={height}, and padding={padding}')
|
152 |
-
|
153 |
-
# Extract the bounding box coordinates and convert them from millimeters to fractions
|
154 |
-
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
|
155 |
-
|
156 |
-
# Apply padding if specified (as a fraction of image dimensions)
|
157 |
-
if padding != 0:
|
158 |
-
min_x = max(0, min_x - padding)
|
159 |
-
min_y = max(0, min_y - padding)
|
160 |
-
max_x = min(max_x + padding, 1)
|
161 |
-
max_y = min(max_y + padding, 1)
|
162 |
-
|
163 |
-
# Scale the normalized coordinates to match the image dimensions
|
164 |
-
return [min_x * width, min_y * height, max_x * width, max_y * height]
|
165 |
-
except Exception as e:
|
166 |
-
# Log exceptions
|
167 |
-
logging.error("An error occurred:", exc_info=True)
|
168 |
-
return None
|
169 |
-
|
170 |
-
def annotate_page(self, prediction, pages, document):
|
171 |
-
try:
|
172 |
-
# Log the function entry
|
173 |
-
logging.info(f'Entering annotate_page with prediction={prediction}, pages={pages}, and document={document}')
|
174 |
-
|
175 |
-
# Check if a prediction exists and contains word_ids
|
176 |
-
if prediction is not None and "word_ids" in prediction:
|
177 |
-
|
178 |
-
# Get the image of the page where the prediction was made
|
179 |
-
image = pages[prediction["page"]]
|
180 |
-
|
181 |
-
# Create a drawing object for the image
|
182 |
-
draw = ImageDraw.Draw(image, "RGBA")
|
183 |
-
|
184 |
-
# Extract word boxes for the page
|
185 |
-
word_boxes = self.lift_word_boxes(document, prediction["page"])
|
186 |
-
|
187 |
-
# Expand and normalize the bounding box of the predicted words
|
188 |
-
x1, y1, x2, y2 = self.normalize_bbox(
|
189 |
-
self.expand_bbox([word_boxes[i] for i in prediction["word_ids"]]),
|
190 |
-
image.width,
|
191 |
-
image.height,
|
192 |
-
)
|
193 |
-
|
194 |
-
# Draw a semi-transparent green rectangle around the predicted words
|
195 |
-
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
|
196 |
-
except Exception as e:
|
197 |
-
# Log exceptions
|
198 |
-
logging.error("An error occurred:", exc_info=True)
|
199 |
-
|
200 |
-
def process_fields(self, document, fields, model=list(CHECKPOINTS.keys())[0]):
|
201 |
-
try:
|
202 |
-
# Log the function entry
|
203 |
-
logging.info(f'Entering process_fields with document={document}, fields={fields}, and model={model}')
|
204 |
-
|
205 |
-
# Convert preview pages of the document to RGB format
|
206 |
-
pages = [x.copy().convert("RGB") for x in document.preview]
|
207 |
-
|
208 |
-
# Initialize dictionaries to store results
|
209 |
-
ret = {}
|
210 |
-
table = []
|
211 |
-
|
212 |
-
# Iterate through the fields and associated questions
|
213 |
-
for (field_name, questions) in fields.items():
|
214 |
-
|
215 |
-
# Extract answers for each question and filter based on score
|
216 |
-
answers = [
|
217 |
-
a
|
218 |
-
for q in questions
|
219 |
-
for a in self.ensure_list(self.run_pipeline(model, q, document, top_k=1))
|
220 |
-
if a.get("score", 1) > 0.5
|
221 |
-
]
|
222 |
-
|
223 |
-
# Sort answers by score (higher score first)
|
224 |
-
answers.sort(key=lambda x: -x.get("score", 0) if x else 0)
|
225 |
-
|
226 |
-
# Get the top answer (if any)
|
227 |
-
top = answers[0] if len(answers) > 0 else None
|
228 |
-
|
229 |
-
# Annotate the page with the top answer's bounding box
|
230 |
-
self.annotate_page(top, pages, document)
|
231 |
-
|
232 |
-
# Store the top answer for the field and add it to the table
|
233 |
-
ret[field_name] = top
|
234 |
-
table.append([field_name, top.get("answer") if top is not None else None])
|
235 |
-
|
236 |
-
# Return the table of key-value pairs
|
237 |
-
return table
|
238 |
-
except Exception as e:
|
239 |
-
# Log exceptions
|
240 |
-
logging.error("An error occurred:", exc_info=True)
|
241 |
-
return []
|
242 |
-
|
243 |
-
def process_document(self, document, fields, model, error=None):
|
244 |
-
try:
|
245 |
-
# Log the function entry
|
246 |
-
logging.info(f'Entering process_document with document={document}, fields={fields}, model={model}, and error={error}')
|
247 |
-
|
248 |
-
# Check if the document is not None and no error occurred during processing
|
249 |
-
if document is not None and error is None:
|
250 |
-
|
251 |
-
# Process the fields in the document using the specified model
|
252 |
-
table = self.process_fields(document, fields, model)
|
253 |
-
return table
|
254 |
-
except Exception as e:
|
255 |
-
# Log exceptions
|
256 |
-
logging.error("An error occurred:", exc_info=True)
|
257 |
-
return []
|
258 |
-
|
259 |
-
def process_path(self, path, fields, model):
|
260 |
-
try:
|
261 |
-
# Log the function entry
|
262 |
-
logging.info(f'Entering process_path with path={path}, fields={fields}, and model={model}')
|
263 |
-
|
264 |
-
# Initialize error and document variables
|
265 |
-
error = None
|
266 |
-
document = None
|
267 |
-
|
268 |
-
# Check if a file path is provided
|
269 |
-
if path:
|
270 |
-
try:
|
271 |
-
# Load the document from the specified file path
|
272 |
-
document = load_document(path)
|
273 |
-
except Exception as e:
|
274 |
-
# Handle exceptions and store the error message
|
275 |
-
logging.error("An error occurred:", exc_info=True)
|
276 |
-
error = str(e)
|
277 |
-
|
278 |
-
# Process the loaded document and extract key-value pairs
|
279 |
-
return self.process_document(document, fields, model, error)
|
280 |
-
except Exception as e:
|
281 |
-
# Log exceptions
|
282 |
-
logging.error("An error occurred:", exc_info=True)
|
283 |
-
return []
|
284 |
-
|
285 |
-
def pdf_to_image(self, file_path):
|
286 |
-
try:
|
287 |
-
# Log the function entry
|
288 |
-
logging.info(f'Entering pdf_to_image with file_path={file_path}')
|
289 |
-
|
290 |
-
# Convert PDF to a list of image objects (one for each page)
|
291 |
-
images = convert_from_path(file_path)
|
292 |
-
|
293 |
-
# Loop through each image and save it
|
294 |
-
for i, image in enumerate(images):
|
295 |
-
image_path = f'page_{i + 1}.png'
|
296 |
-
|
297 |
-
return image_path
|
298 |
-
except Exception as e:
|
299 |
-
# Log exceptions
|
300 |
-
logging.error("An error occurred:", exc_info=True)
|
301 |
-
return []
|
302 |
-
|
303 |
-
def process_upload(self, file):
|
304 |
-
try:
|
305 |
-
# Log the function entry
|
306 |
-
logging.info(f'Entering process_upload with file={file}')
|
307 |
-
|
308 |
-
# Get the model and fields from the instance
|
309 |
-
model = self.model
|
310 |
-
fields = self.fields
|
311 |
-
|
312 |
-
# Convert the uploaded PDF file to a list of image files
|
313 |
-
image = self.pdf_to_image(file)
|
314 |
-
|
315 |
-
# Use the first generated image file as the file path for processing
|
316 |
-
file = image
|
317 |
-
|
318 |
-
# Process the document (image) and extract key-value pairs
|
319 |
-
return self.process_path(file if file else None, fields, model)
|
320 |
-
except Exception as e:
|
321 |
-
# Log exceptions
|
322 |
-
logging.error("An error occurred:", exc_info=True)
|
323 |
-
return []
|
324 |
-
|
325 |
-
def extract_key_value_pair(self, invoice_file):
|
326 |
-
try:
|
327 |
-
# Log the function entry
|
328 |
-
logging.info(f'Entering extract_key_value_pair with invoice_file={invoice_file}')
|
329 |
-
|
330 |
-
# Process the uploaded invoice PDF file and extract key-value pairs
|
331 |
-
data = self.process_upload(invoice_file.name)
|
332 |
-
|
333 |
-
# Iterate through the extracted key-value pairs and print them
|
334 |
-
for item in data:
|
335 |
-
key, value = item
|
336 |
-
return f'{key}: {value}'
|
337 |
-
|
338 |
-
except Exception as e:
|
339 |
-
# Log exceptions
|
340 |
-
logging.error("An error occurred:", exc_info=True)
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|