Spaces:
Running
Running
robertselvam
commited on
Commit
•
588b16e
1
Parent(s):
a3f1c86
Upload 3 files
Browse files- aggressive_content_finder.py +99 -0
- incompletesentencefinder.py +93 -0
- incorrect_sentence_finder.py +81 -0
aggressive_content_finder.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
import openai
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
class AggressiveContentFinder:
|
8 |
+
"""
|
9 |
+
This class identifies and extracts aggressive terms in a contract document using OpenAI's GPT-3.
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
"""
|
15 |
+
Initialize the AggressiveContentFinder with your OpenAI API key.
|
16 |
+
"""
|
17 |
+
# openai.api_key = openai_api_key
|
18 |
+
pass
|
19 |
+
|
20 |
+
def _extract_aggressive_content(self, contract_text: str) -> str:
|
21 |
+
"""
|
22 |
+
Use OpenAI's GPT-3 to identify aggressive terms in the given contract text.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
contract_text (str): Text extracted from the contract.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
str: Identified aggressive terms.
|
29 |
+
"""
|
30 |
+
try:
|
31 |
+
response = openai.Completion.create(
|
32 |
+
engine="text-davinci-003",
|
33 |
+
prompt=f"""This is a contract document content. Your task is to identify aggressive terms like warning terms, penalties in the given contract:
|
34 |
+
(Example: "The bank may take possession of the property.")
|
35 |
+
```contract: {contract_text}```
|
36 |
+
""",
|
37 |
+
max_tokens=70,
|
38 |
+
temperature=0
|
39 |
+
)
|
40 |
+
aggressive_terms = response.choices[0].text.strip()
|
41 |
+
return aggressive_terms
|
42 |
+
except Exception as e:
|
43 |
+
print(f"An error occurred during text analysis: {str(e)}")
|
44 |
+
|
45 |
+
def get_aggressive_content(self, pdf_file_path: str):
|
46 |
+
"""
|
47 |
+
Extract text from a PDF document and identify aggressive terms.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
pdf_file_path (str): Path to the PDF document.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
str: Identified aggressive terms in the contract document.
|
54 |
+
|
55 |
+
This method opens a multi-page PDF using PdfReader and iterates through each page. For each page, it extracts
|
56 |
+
the text and passes it to the _extract_aggressive_content method for further processing. The identified
|
57 |
+
aggressive terms are concatenated and returned. If any errors occur during PDF processing, they are logged for
|
58 |
+
debugging.
|
59 |
+
"""
|
60 |
+
try:
|
61 |
+
# Open the multi-page PDF using PdfReader
|
62 |
+
pdf = PdfReader(pdf_file_path)
|
63 |
+
|
64 |
+
aggressive_terms = ""
|
65 |
+
|
66 |
+
# Extract text from each page and pass it to the process_text function
|
67 |
+
for page_number in range(len(pdf.pages)):
|
68 |
+
# Extract text from the page
|
69 |
+
page = pdf.pages[page_number]
|
70 |
+
text = page.extract_text()
|
71 |
+
|
72 |
+
# Pass the text to the process_text function for further processing
|
73 |
+
aggressive_terms += self._extract_aggressive_content(text)
|
74 |
+
return aggressive_terms
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
print(f"An error occurred while processing the PDF document: {str(e)}")
|
78 |
+
|
79 |
+
def file_output_fnn(self,file_path):
|
80 |
+
file_path = file_path.name
|
81 |
+
return file_path
|
82 |
+
|
83 |
+
def gradio_interface(self):
|
84 |
+
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:
|
85 |
+
with gr.Row(elem_id = "col-container",scale=0.80):
|
86 |
+
with gr.Column(elem_id = "col-container",scale=0.80):
|
87 |
+
file1 = gr.File(label="File",elem_classes="filenameshow")
|
88 |
+
|
89 |
+
with gr.Column(elem_id = "col-container",scale=0.20):
|
90 |
+
upload_button1 = gr.UploadButton(
|
91 |
+
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
|
92 |
+
elem_classes="uploadbutton")
|
93 |
+
aggressive_content = gr.Button("Get Headings",elem_classes="uploadbutton")
|
94 |
+
|
95 |
+
with gr.Row(elem_id = "col-container",scale=0.60):
|
96 |
+
headings = gr.Textbox(label = "Headings")
|
97 |
+
|
98 |
+
upload_button1.upload(self.file_output_fnn,upload_button1,file1)
|
99 |
+
aggressive_content.click(self.get_aggressive_content,upload_button1,headings)
|
incompletesentencefinder.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF
|
2 |
+
import openai
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
class IncompleteSentenceFinder:
|
6 |
+
"""
|
7 |
+
This class finds and displays incomplete sentences in a PDF document using OpenAI's GPT-3.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
api_key (str): Your OpenAI API key.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
"""
|
15 |
+
Initialize the IncompleteSentenceFinder with the PDF file and OpenAI API key.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
api_key (str): Your OpenAI API key.
|
19 |
+
"""
|
20 |
+
# openai.api_key = openai_api_key
|
21 |
+
pass
|
22 |
+
|
23 |
+
def _check_incomplete_sentence(self, text: str) -> str:
|
24 |
+
|
25 |
+
"""
|
26 |
+
Use OpenAI's GPT-3 to identify incomplete sentences in the given text.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
text (str): Text to check for incomplete sentences.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
str: Incomplete sentences identified by GPT-3.
|
33 |
+
"""
|
34 |
+
# Create a request to OpenAI's GPT-3 engine to identify incomplete sentences.
|
35 |
+
response = openai.Completion.create(
|
36 |
+
engine="text-davinci-003",
|
37 |
+
prompt=f"list out the incomplete sentences in the following text:\n{text}",
|
38 |
+
max_tokens=1000,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Extract and strip the text of identified incomplete sentences from the GPT-3 response.
|
42 |
+
incomplete_sentences = response.choices[0].text.strip()
|
43 |
+
|
44 |
+
print("incomplete_sentences Extracted Successfully!")
|
45 |
+
|
46 |
+
return incomplete_sentences
|
47 |
+
|
48 |
+
def get_incomplete_sentence(self,pdf_file) -> str:
|
49 |
+
|
50 |
+
"""
|
51 |
+
Extract text from the PDF document and find incomplete sentences.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
str: Incomplete sentences identified by GPT-3.
|
55 |
+
"""
|
56 |
+
try:
|
57 |
+
# Open the PDF file using PyMuPDF's fitz library
|
58 |
+
doc = fitz.open(pdf_file)
|
59 |
+
incomplete_text = ""
|
60 |
+
|
61 |
+
# Iterate through each page in the PDF document and extract the text
|
62 |
+
for page in doc:
|
63 |
+
text = page.get_text()
|
64 |
+
incomplete_text += self._check_incomplete_sentence(text)
|
65 |
+
|
66 |
+
return incomplete_text
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
print(f"An error occurred: {str(e)}")
|
70 |
+
|
71 |
+
def file_output_fnn(self,file_path):
|
72 |
+
|
73 |
+
file_path = file_path.name
|
74 |
+
return file_path
|
75 |
+
|
76 |
+
def gradio_interface(self):
|
77 |
+
|
78 |
+
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:
|
79 |
+
with gr.Row(elem_id = "col-container",scale=0.80):
|
80 |
+
with gr.Column(elem_id = "col-container",scale=0.80):
|
81 |
+
file1 = gr.File(label="File",elem_classes="filenameshow")
|
82 |
+
|
83 |
+
with gr.Column(elem_id = "col-container",scale=0.20):
|
84 |
+
upload_button1 = gr.UploadButton(
|
85 |
+
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
|
86 |
+
elem_classes="uploadbutton")
|
87 |
+
incomplete_sentence_btn = gr.Button("Get Headings",elem_classes="uploadbutton")
|
88 |
+
|
89 |
+
with gr.Row(elem_id = "col-container",scale=0.60):
|
90 |
+
headings = gr.Textbox(label = "Headings")
|
91 |
+
|
92 |
+
upload_button1.upload(self.file_output_fnn,upload_button1,file1)
|
93 |
+
incomplete_sentence_btn.click(self.get_incomplete_sentence,upload_button1,headings)
|
incorrect_sentence_finder.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF
|
2 |
+
import openai
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
class IncorrectSentenceFinder:
|
6 |
+
"""
|
7 |
+
This class finds and displays grammatically incorrect sentences in a PDF document using OpenAI's GPT-3.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
pdf_file (str): The path to the PDF file.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
"""
|
15 |
+
Initialize the IncorrectSentenceFinder with the OpenAI API key.
|
16 |
+
"""
|
17 |
+
# openai.api_key = openai_api_key
|
18 |
+
pass
|
19 |
+
|
20 |
+
def _find_incorrect_sentence(self, text: str) -> str:
|
21 |
+
"""
|
22 |
+
Use OpenAI's GPT-3 to identify grammatically incorrect sentences in the given text.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
text (str): Text to check for grammatical errors.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
str: Grammatically incorrect sentences identified by GPT-3.
|
29 |
+
"""
|
30 |
+
# Create a request to OpenAI's GPT-3 engine to identify grammatically incorrect sentences.
|
31 |
+
response = openai.Completion.create(
|
32 |
+
engine="text-davinci-003",
|
33 |
+
prompt=f"list out the grammatical error sentence in the given text:\n{text}",
|
34 |
+
temperature=0,
|
35 |
+
max_tokens=1000,
|
36 |
+
)
|
37 |
+
|
38 |
+
# Extract and strip the text of identified grammatically incorrect sentences from the GPT-3 response.
|
39 |
+
incorrect_sentences = response.choices[0].text.strip()
|
40 |
+
return incorrect_sentences
|
41 |
+
|
42 |
+
def get_incorrect_sentence(self, pdf_file: str) -> str:
|
43 |
+
"""
|
44 |
+
Extract text from the PDF document and find grammatically incorrect sentences.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: Grammatically incorrect sentences identified by GPT-3.
|
48 |
+
"""
|
49 |
+
try:
|
50 |
+
# Open the PDF file using PyMuPDF's fitz library
|
51 |
+
doc = fitz.open(pdf_file)
|
52 |
+
incorrect_sentences = ''
|
53 |
+
# Iterate through each page in the PDF document and extract the text
|
54 |
+
for page in doc:
|
55 |
+
text = page.get_text()
|
56 |
+
incorrect_sentences += self._find_incorrect_sentence(text)
|
57 |
+
return incorrect_sentences
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
print(f"An error occurred: {str(e)}")
|
61 |
+
def file_output_fnn(self,file_path):
|
62 |
+
file_path = file_path.name
|
63 |
+
return file_path
|
64 |
+
|
65 |
+
def gradio_interface(self):
|
66 |
+
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo:
|
67 |
+
with gr.Row(elem_id = "col-container",scale=0.80):
|
68 |
+
with gr.Column(elem_id = "col-container",scale=0.80):
|
69 |
+
file1 = gr.File(label="File",elem_classes="filenameshow")
|
70 |
+
|
71 |
+
with gr.Column(elem_id = "col-container",scale=0.20):
|
72 |
+
upload_button1 = gr.UploadButton(
|
73 |
+
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
|
74 |
+
elem_classes="uploadbutton")
|
75 |
+
incorrect_sentence = gr.Button("Get Headings",elem_classes="uploadbutton")
|
76 |
+
|
77 |
+
with gr.Row(elem_id = "col-container",scale=0.60):
|
78 |
+
headings = gr.Textbox(label = "Headings")
|
79 |
+
|
80 |
+
upload_button1.upload(self.file_output_fnn,upload_button1,file1)
|
81 |
+
incorrect_sentence.click(self.get_incorrect_sentence,upload_button1,headings)
|