Spaces:
Running
Running
naveenvenkatesh
commited on
Commit
•
970b086
1
Parent(s):
c837a58
Update summary_extractor.py
Browse files- summary_extractor.py +16 -12
summary_extractor.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
|
2 |
import json
|
3 |
from typing import Dict
|
4 |
import os
|
5 |
from typing import List
|
6 |
-
from
|
7 |
-
from langchain.document_loaders import PyPDFLoader
|
8 |
from langchain.chains.mapreduce import MapReduceChain
|
9 |
from langchain.text_splitter import CharacterTextSplitter
|
10 |
from langchain.chains.summarize import load_summarize_chain
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
-
|
13 |
|
14 |
class Extractor:
|
15 |
|
@@ -20,13 +19,16 @@ class Extractor:
|
|
20 |
config (dict): Configuration settings loaded from a JSON file.
|
21 |
pdf_file_path (str): Path to the input PDF file.
|
22 |
"""
|
|
|
23 |
def __init__(self):
|
24 |
"""
|
25 |
Initialize the Extractor class.
|
26 |
"""
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
def _document_loader(self,pdf_file_path) -> List[str]:
|
32 |
"""
|
@@ -36,7 +38,7 @@ class Extractor:
|
|
36 |
List[str]: List of text content from each page.
|
37 |
"""
|
38 |
try:
|
39 |
-
loader =
|
40 |
pages = loader.load_and_split()
|
41 |
return pages
|
42 |
|
@@ -54,15 +56,15 @@ class Extractor:
|
|
54 |
try:
|
55 |
# Load the document texts
|
56 |
docs = self._document_loader(pdf_file_path)
|
57 |
-
|
58 |
# Initialize the text splitter with specified chunk size and overlap
|
59 |
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
60 |
chunk_size=1000, chunk_overlap=200
|
61 |
)
|
62 |
-
|
63 |
# Split the documents into chunks
|
64 |
split_docs = text_splitter.split_documents(docs)
|
65 |
-
|
66 |
# Return the list of split document chunks
|
67 |
return split_docs
|
68 |
|
@@ -70,13 +72,15 @@ class Extractor:
|
|
70 |
print(f"Error while splitting document text: {str(e)}")
|
71 |
|
72 |
|
73 |
-
def
|
|
|
74 |
"""
|
75 |
Generate a refined summary of the document using language models.
|
76 |
|
77 |
Returns:
|
78 |
str: Refined summary text.
|
79 |
"""
|
|
|
80 |
try:
|
81 |
# Split documents into chunks for efficient processing
|
82 |
split_docs = self._document_text_spilliter(pdf_file_path)
|
@@ -103,7 +107,7 @@ class Extractor:
|
|
103 |
|
104 |
# Load the summarization chain using the ChatOpenAI language model
|
105 |
chain = load_summarize_chain(
|
106 |
-
llm =
|
107 |
chain_type="refine",
|
108 |
question_prompt=prompt,
|
109 |
refine_prompt=refine_prompt,
|
|
|
1 |
+
import openai
|
2 |
import json
|
3 |
from typing import Dict
|
4 |
import os
|
5 |
from typing import List
|
6 |
+
from langchain_openai import AzureChatOpenAI
|
|
|
7 |
from langchain.chains.mapreduce import MapReduceChain
|
8 |
from langchain.text_splitter import CharacterTextSplitter
|
9 |
from langchain.chains.summarize import load_summarize_chain
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
12 |
|
13 |
class Extractor:
|
14 |
|
|
|
19 |
config (dict): Configuration settings loaded from a JSON file.
|
20 |
pdf_file_path (str): Path to the input PDF file.
|
21 |
"""
|
22 |
+
|
23 |
def __init__(self):
|
24 |
"""
|
25 |
Initialize the Extractor class.
|
26 |
"""
|
27 |
|
28 |
+
openai.api_type = os.getenv['api_type']
|
29 |
+
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv['api_key']
|
30 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv['api_base']
|
31 |
+
os.environ["OPENAI_API_VERSION"] = os.getenv['api_version']
|
32 |
|
33 |
def _document_loader(self,pdf_file_path) -> List[str]:
|
34 |
"""
|
|
|
38 |
List[str]: List of text content from each page.
|
39 |
"""
|
40 |
try:
|
41 |
+
loader = UnstructuredFileLoader(pdf_file_path)
|
42 |
pages = loader.load_and_split()
|
43 |
return pages
|
44 |
|
|
|
56 |
try:
|
57 |
# Load the document texts
|
58 |
docs = self._document_loader(pdf_file_path)
|
59 |
+
|
60 |
# Initialize the text splitter with specified chunk size and overlap
|
61 |
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
62 |
chunk_size=1000, chunk_overlap=200
|
63 |
)
|
64 |
+
|
65 |
# Split the documents into chunks
|
66 |
split_docs = text_splitter.split_documents(docs)
|
67 |
+
|
68 |
# Return the list of split document chunks
|
69 |
return split_docs
|
70 |
|
|
|
72 |
print(f"Error while splitting document text: {str(e)}")
|
73 |
|
74 |
|
75 |
+
def refine_summary(self,pdf_file_path) -> str:
|
76 |
+
|
77 |
"""
|
78 |
Generate a refined summary of the document using language models.
|
79 |
|
80 |
Returns:
|
81 |
str: Refined summary text.
|
82 |
"""
|
83 |
+
|
84 |
try:
|
85 |
# Split documents into chunks for efficient processing
|
86 |
split_docs = self._document_text_spilliter(pdf_file_path)
|
|
|
107 |
|
108 |
# Load the summarization chain using the ChatOpenAI language model
|
109 |
chain = load_summarize_chain(
|
110 |
+
llm = AzureChatOpenAI(azure_deployment = "ChatGPT"),
|
111 |
chain_type="refine",
|
112 |
question_prompt=prompt,
|
113 |
refine_prompt=refine_prompt,
|