Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
import pandas as pd
|
3 |
+
import logging
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
logging.basicConfig(level=logging.INFO)
|
7 |
+
|
8 |
+
class FinanceSummary:
|
9 |
+
"""
|
10 |
+
Class for generating a detailed summary of financial data using the Mixtral model.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
self.client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
15 |
+
self.logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
def format_prompt(self, data: pd.DataFrame) -> str:
|
18 |
+
"""
|
19 |
+
Format prompt for Mixtral model.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
data (pd.DataFrame): Financial data in a DataFrame.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
str: Formatted prompt for the model.
|
26 |
+
"""
|
27 |
+
prompt = "<s>"
|
28 |
+
prompt += f"[INST] analyze given csv sheet and give me a detailed summary mention the range of money transactions{data}[/INST]"
|
29 |
+
return prompt
|
30 |
+
|
31 |
+
def to_dataframe(self,filepath: str) -> pd.DataFrame:
|
32 |
+
"""
|
33 |
+
Read financial data from a CSV file and return it as a DataFrame.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
filepath (str): Path to the CSV file containing financial data.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
pd.DataFrame: DataFrame containing the financial data.
|
40 |
+
"""
|
41 |
+
financial_data = pd.read_csv(filepath)
|
42 |
+
return financial_data
|
43 |
+
|
44 |
+
def generate(self, filepath: str, temperature: float = 0.9, max_new_tokens: int = 5000,
|
45 |
+
top_p: float = 0.95, repetition_penalty: float = 1.0) -> str:
|
46 |
+
"""
|
47 |
+
Generate a detailed summary of financial data.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
data (pd.DataFrame): Financial data in a DataFrame.
|
51 |
+
temperature (float): Controls the randomness of the predictions. Defaults to 0.9.
|
52 |
+
max_new_tokens (int): Maximum number of tokens to generate. Defaults to 5000.
|
53 |
+
top_p (float): The cumulative probability for sampling from the logits. Defaults to 0.95.
|
54 |
+
repetition_penalty (float): Penalty for repetition. Defaults to 1.0.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
str: Generated summary.
|
58 |
+
"""
|
59 |
+
try:
|
60 |
+
temperature = float(temperature)
|
61 |
+
if temperature < 1e-2:
|
62 |
+
temperature = 1e-2
|
63 |
+
top_p = float(top_p)
|
64 |
+
|
65 |
+
generate_kwargs = dict(
|
66 |
+
temperature=temperature,
|
67 |
+
max_new_tokens=max_new_tokens,
|
68 |
+
top_p=top_p,
|
69 |
+
repetition_penalty=repetition_penalty,
|
70 |
+
do_sample=True,
|
71 |
+
seed=42,
|
72 |
+
)
|
73 |
+
data = self.to_dataframe(filepath)
|
74 |
+
formatted_prompt = self.format_prompt(data)
|
75 |
+
stream = self.client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
|
76 |
+
return_full_text=False)
|
77 |
+
output = ""
|
78 |
+
|
79 |
+
for response in stream:
|
80 |
+
output += response.token.text
|
81 |
+
return output.replace("</s>", "")
|
82 |
+
except Exception as e:
|
83 |
+
self.logger.error(f"An error occurred: {e}")
|
84 |
+
return ""
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
|
88 |
+
finance_summary = FinanceSummary()
|
89 |
+
|
90 |
+
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
|
91 |
+
with gr.Row():
|
92 |
+
filepath = gr.File(label="Upload CSV File",elem_classes="upload-file")
|
93 |
+
with gr.Row():
|
94 |
+
submit_btn = gr.Button(value="Submit")
|
95 |
+
with gr.Row():
|
96 |
+
summary = gr.Textbox(label="Detailed Summary",lines=20)
|
97 |
+
|
98 |
+
submit_btn.click(finance_summary.generate,filepath,summary)
|
99 |
+
|
100 |
+
demo.launch()
|