KarthickAdopleAI commited on
Commit
26a187b
·
verified ·
1 Parent(s): bc5111e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -0
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import InferenceClient
2
+ import pandas as pd
3
+ import logging
4
+ import gradio as gr
5
+
6
+ logging.basicConfig(level=logging.INFO)
7
+
8
+ class FinanceSummary:
9
+ """
10
+ Class for generating a detailed summary of financial data using the Mixtral model.
11
+ """
12
+
13
+ def __init__(self):
14
+ self.client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
15
+ self.logger = logging.getLogger(__name__)
16
+
17
+ def format_prompt(self, data: pd.DataFrame) -> str:
18
+ """
19
+ Format prompt for Mixtral model.
20
+
21
+ Args:
22
+ data (pd.DataFrame): Financial data in a DataFrame.
23
+
24
+ Returns:
25
+ str: Formatted prompt for the model.
26
+ """
27
+ prompt = "<s>"
28
+ prompt += f"[INST] analyze given csv sheet and give me a detailed summary mention the range of money transactions{data}[/INST]"
29
+ return prompt
30
+
31
+ def to_dataframe(self,filepath: str) -> pd.DataFrame:
32
+ """
33
+ Read financial data from a CSV file and return it as a DataFrame.
34
+
35
+ Args:
36
+ filepath (str): Path to the CSV file containing financial data.
37
+
38
+ Returns:
39
+ pd.DataFrame: DataFrame containing the financial data.
40
+ """
41
+ financial_data = pd.read_csv(filepath)
42
+ return financial_data
43
+
44
+ def generate(self, filepath: str, temperature: float = 0.9, max_new_tokens: int = 5000,
45
+ top_p: float = 0.95, repetition_penalty: float = 1.0) -> str:
46
+ """
47
+ Generate a detailed summary of financial data.
48
+
49
+ Args:
50
+ data (pd.DataFrame): Financial data in a DataFrame.
51
+ temperature (float): Controls the randomness of the predictions. Defaults to 0.9.
52
+ max_new_tokens (int): Maximum number of tokens to generate. Defaults to 5000.
53
+ top_p (float): The cumulative probability for sampling from the logits. Defaults to 0.95.
54
+ repetition_penalty (float): Penalty for repetition. Defaults to 1.0.
55
+
56
+ Returns:
57
+ str: Generated summary.
58
+ """
59
+ try:
60
+ temperature = float(temperature)
61
+ if temperature < 1e-2:
62
+ temperature = 1e-2
63
+ top_p = float(top_p)
64
+
65
+ generate_kwargs = dict(
66
+ temperature=temperature,
67
+ max_new_tokens=max_new_tokens,
68
+ top_p=top_p,
69
+ repetition_penalty=repetition_penalty,
70
+ do_sample=True,
71
+ seed=42,
72
+ )
73
+ data = self.to_dataframe(filepath)
74
+ formatted_prompt = self.format_prompt(data)
75
+ stream = self.client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
76
+ return_full_text=False)
77
+ output = ""
78
+
79
+ for response in stream:
80
+ output += response.token.text
81
+ return output.replace("</s>", "")
82
+ except Exception as e:
83
+ self.logger.error(f"An error occurred: {e}")
84
+ return ""
85
+
86
+ if __name__ == "__main__":
87
+
88
+ finance_summary = FinanceSummary()
89
+
90
+ with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
91
+ with gr.Row():
92
+ filepath = gr.File(label="Upload CSV File",elem_classes="upload-file")
93
+ with gr.Row():
94
+ submit_btn = gr.Button(value="Submit")
95
+ with gr.Row():
96
+ summary = gr.Textbox(label="Detailed Summary",lines=20)
97
+
98
+ submit_btn.click(finance_summary.generate,filepath,summary)
99
+
100
+ demo.launch()