File size: 12,321 Bytes
43e1c6a
 
 
 
 
 
 
 
 
 
 
 
 
dd465fa
43e1c6a
 
 
 
b55512d
c00db80
43e1c6a
30d4e59
3b837bc
2b1d107
02b5e5d
43e1c6a
 
 
7379211
43e1c6a
 
 
 
 
 
 
 
 
3b837bc
 
5fc65a1
 
 
 
7379211
5fc65a1
 
 
 
 
 
 
66a67d1
032eb48
 
 
 
9cf1da2
032eb48
681c09e
032eb48
 
43e1c6a
34f02f6
d831be2
 
 
 
 
 
921625c
34f02f6
 
43e1c6a
 
 
 
c00db80
43e1c6a
 
3227853
43e1c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c00db80
43e1c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c00db80
43e1c6a
80335f6
43e1c6a
 
 
 
 
 
 
 
9cf1da2
681c09e
09e414c
43e1c6a
1bc01da
681c09e
80335f6
001e9e6
921625c
 
43e1c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687f31
43e1c6a
 
 
 
 
eaed23c
 
 
 
 
 
 
 
 
43e1c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a128339
c6deabe
2e5b5a1
c6deabe
43e1c6a
 
141b4a5
43e1c6a
 
 
 
141b4a5
43e1c6a
 
e3ea91a
43e1c6a
 
 
921625c
e3ea91a
34f02f6
43e1c6a
 
 
 
 
 
ad4ae8a
43e1c6a
d4d2bc1
c00db80
 
8139e09
 
 
659df08
c93e012
 
 
 
 
 
8139e09
 
 
 
 
 
 
d798e26
8139e09
 
 
 
5b4f4a3
 
 
 
 
 
 
c512852
5b4f4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e1c6a
 
 
 
 
 
 
 
 
 
34f02f6
d359f3d
24c2679
43e1c6a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from pydantic import NoneStr
import os
import mimetypes
import validators
import requests
import tempfile
import gradio as gr
import openai
import re
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import plotly.express as px
import pandas as pd


class SentimentAnalyzer:
    def __init__(self):
        # self.model="facebook/bart-large-mnli"
        openai.api_key=os.getenv("OPENAI_API_KEY")
    def emotion_analysis(self,text):
        prompt = f""" Your task is find the top 3 emotion for this converstion {text}: <Sadness, Happiness, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
        you are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 3 result having the highest score]
        The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
        """
        response = openai.Completion.create(
            model="text-davinci-003",
            prompt=prompt,
            temperature=0,
            max_tokens=60,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        message = response.choices[0].text.strip().replace("\n","")
        return message

    def analyze_sentiment_for_graph(self, text):
        prompt = f""" Your task is find the setiments for this converstion {text} : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
        you are analyze the text and provide the output in the following json format heigher to lower order: '''["label1","label2","label3"][score1,score2,score3]'''
        """
        response = openai.Completion.create(
        model="text-davinci-003",
        prompt=prompt,
        temperature=0,
        max_tokens=60,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
        )

        # Extract the generated text
        sentiment_scores = response.choices[0].text.strip()
        start_index = sentiment_scores.find("[")
        end_index = sentiment_scores.find("]")
        list1_text = sentiment_scores[start_index + 1: end_index]
        list2_text = sentiment_scores[end_index + 2:-1]
        sentiment = list(map(str.strip, list1_text.split(",")))
        scores = list(map(float, list2_text.split(",")))
        score_dict={"Sentiment": sentiment, "Score": scores}
        print(score_dict)
        return score_dict

    def emotion_analysis_for_graph(self,text):
        start_index = text.find("[")
        end_index = text.find("]")
        list1_text = text[start_index + 1: end_index]
        list2_text = text[end_index + 2:-1]
        emotions = list(map(str.strip, list1_text.split(",")))
        scores = list(map(float, list2_text.split(",")))
        score_dict={"Emotion": emotions, "Score": scores}
        print(score_dict)
        return score_dict


class Summarizer:
    def __init__(self):
        openai.api_key=os.getenv("OPENAI_API_KEY")
    def generate_summary(self, text):
        model_engine = "text-davinci-003"
        prompt = f"""summarize the following conversation delimited by triple backticks. write within 30 words.```{text}``` """
        completions = openai.Completion.create(
            engine=model_engine,
            prompt=prompt,
            max_tokens=60,
            n=1,
            stop=None,
            temperature=0.5,
        )
        message = completions.choices[0].text.strip()
        return message

history_state = gr.State()
summarizer = Summarizer()
sentiment = SentimentAnalyzer()

class LangChain_Document_QA:

    def __init__(self):
        openai.api_key=os.getenv("OPENAI_API_KEY")

    def _add_text(self,history, text):
        history = history + [(text, None)]
        history_state.value = history
        return history,gr.update(value="", interactive=False)

    def _agent_text(self,history, text):
        response = text
        history[-1][1] = response
        history_state.value = history
        return history

    def _chat_history(self):
        history = history_state.value
        formatted_history = " "
        for entry in history:
            customer_text, agent_text = entry
            formatted_history += f"Patient: {customer_text}\n"
            if agent_text:
                formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
        return formatted_history

    def _display_history(self):
        formatted_history=self._chat_history()
        summary=summarizer.generate_summary(formatted_history)
        return summary

    def _display_graph(self,sentiment_scores):
        df = pd.DataFrame(sentiment_scores)
        fig = px.bar(df, x='Score', y='Sentiment', orientation='h', labels={'Score': 'Score', 'Labels': 'Sentiment'})
        fig.update_layout(height=500, width=200)
        return fig
    def _display_graph_emotion(self,customer_emotion_score):
        
        fig = px.pie(customer_emotion_score, values='Score', names='Emotion', title='Emotion Distribution', hover_data=['Score'])
        #fig.update_traces(texttemplate='Emotion', textposition='outside')
        fig.update_layout(height=500, width=200)
        return fig
    def _history_of_chat(self):
        history = history_state.value
        formatted_history = ""
        client=""
        agent=""
        for entry in history:
            customer_text, agent_text = entry
            client+=customer_text
            formatted_history += f"Patient: {customer_text}\n"
            if agent_text:
                agent+=agent_text
                formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
        return client,agent


    def _suggested_answer(self,text):
      try:
        history = self._chat_history()
        try:
          file_path = "patient_details.json"
          with open(file_path) as file:
              patient_details = json.load(file)
        except:
          pass

        prompt = f"""Analyse the patient json If asked for information take it from {patient_details} \
            you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient \
            json information ask previous: <description,symptoms,diagnosis,treatment talk about patient> As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
            first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start. \
            if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues. \
            if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude. \
            Chat History:['''{history}'''] 
            Patient: ['''{text}''']
            Perform as Mental Healthcare Doctor Chatbot
                 """
        response = openai.Completion.create(
            model="text-davinci-003",
            prompt=prompt,
            temperature=0,
            max_tokens=500,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0.6,
        )

        message = response.choices[0].text.strip()
        if  ":" in message:
          message = re.sub(r'^.*:', '', message)
        return message.strip()
      except:
        return "How can I help you?"



    def _text_box(self,customer_emotion,customer_sentiment_score):  
        sentiment_str = ', '.join([f'{label}: {score}' for label, score in zip(customer_sentiment_score['Sentiment'], customer_sentiment_score['Score'])])
        #emotion_str = ', '.join([f'{emotion}: {score}' for emotion, score in zip(customer_emotion['Emotion'], customer_emotion['Score'])])
        return f"Sentiment: {sentiment_str},\nEmotion: {customer_emotion}"

    def _on_sentiment_btn_click(self):
        client=self._history_of_chat()

        customer_emotion=sentiment.emotion_analysis(client)
        customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)

        scores=self._text_box(customer_emotion,customer_sentiment_score)

        customer_fig=self._display_graph(customer_sentiment_score)
        customer_fig.update_layout(title="Sentiment Analysis",width=800)

        customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)

        customer_emotion_fig=self._display_graph_emotion(customer_emotion_score)
        customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
        return scores,customer_fig,customer_emotion_fig


    def clear_func(self):
      history_state.clear()

    def gradio_interface(self):
      with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo:
          with gr.Row():
            gr.HTML("""<center><img class="image" src="https://www.syrahealth.com/images/SyraHealth_Logo_Dark.svg" alt="Image" width="210" height="210"></center>
            """)
          with gr.Row():
               gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""")
          with gr.Row():
              with gr.Column(scale=0.70):
                  with gr.Row():
                      chatbot = gr.Chatbot([], elem_id="chatbot").style(height=360)
                  with gr.Row():
                      with gr.Column(scale=0.80):
                          txt = gr.Textbox(show_label=False,placeholder="Patient").style(container=False, height=360)
                      with gr.Column(scale=0.20):
                          emptyBtn = gr.Button("🧹 Clear")
              with gr.Column(scale=0.30):
                  with gr.Row():
                      txt3 =gr.Textbox(
                      show_label=False,
                      placeholder="AI Healthcare Suggesstion").style(container=False)
                  with gr.Row():
                      button=gr.Button(value="🚀send")
        
          # with gr.Row():
          #   with gr.Column(scale=0.80):
                
          #   with gr.Column(scale=0.20, min_width=0):
          with gr.Accordion("Conversational AI Analytics", open = False):
              with gr.Row():
                  with gr.Column(scale=0.50):
                      txt4 =gr.Textbox(
                          show_label=False,
                          lines=4,
                          placeholder="Summary").style(container=False)
                  with gr.Column(scale=0.50):
                      txt5 =gr.Textbox(
                          show_label=False,
                          lines=4,
                          placeholder="Sentiment").style(container=False)
              with gr.Row():
                  with gr.Column(scale=0.50, min_width=0):
                      end_btn=gr.Button(value="End")
                  with gr.Column(scale=0.50, min_width=0):
                      Sentiment_btn=gr.Button(value="📊",callback=self._on_sentiment_btn_click)
              with gr.Row():
                  gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
              with gr.Row():
                  with gr.Column(scale=1, min_width=0):
                      plot =gr.Plot(label="Patient", size=(500, 600))
              with gr.Row():
                  with gr.Column(scale=1, min_width=0):
                      plot_3 =gr.Plot(label="Patient_Emotion", size=(500, 600))


          txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
          txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
          txt.submit(self._suggested_answer,txt,txt3)
          button.click(self._agent_text, [chatbot,txt3], chatbot)
          end_btn.click(self._display_history, [], txt4)
          emptyBtn.click(self.clear_func,[],[])
          emptyBtn.click(lambda: None, None, chatbot, queue=False)

          Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_3])
 
      demo.title = "AI Mental Healthcare ChatBot"
      demo.launch()
document_qa =LangChain_Document_QA()
document_qa.gradio_interface()