Karthikeyan commited on
Commit
574e516
·
1 Parent(s): 34f02f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -25,8 +25,8 @@ class SentimentAnalyzer:
25
  sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
26
  return sentiment_scores_str
27
  def emotion_analysis(self,text):
28
- prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score of the text.\
29
- your are analyze the text and provide the output in the following format: \{emotions: scores\} [with top 3 result having the highest score]
30
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.\
31
  analyze the text : '''{text}'''
32
  """
@@ -154,14 +154,13 @@ class LangChain_Document_QA:
154
  except:
155
  pass
156
 
157
- prompt = f"""As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
 
158
  first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start.
159
  if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues.
160
- if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude.
161
- Analyse the patient json If asked for information take it from {patient_details}
162
- you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient json information ask previous: <description,symptoms,diagnosis,treatment talk about patient>
163
- Chat History:[{history}]
164
- Patient: [{text}]
165
  Perform as Mental Healthcare Doctor Chatbot
166
  """
167
  response = openai.Completion.create(
@@ -202,7 +201,9 @@ class LangChain_Document_QA:
202
 
203
  customer_emotion_fig=self._display_graph(customer_emotion_score)
204
  customer_emotion_fig.update_layout(title="Emotion Analysis",width=770)
205
-
 
 
206
  return scores,customer_fig,customer_emotion_fig
207
 
208
 
 
25
  sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
26
  return sentiment_scores_str
27
  def emotion_analysis(self,text):
28
+ prompt = f""" Your task is find the top 1 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score of the text.\
29
+ your are analyze the text and provide the output in the following dict format: '''emotions: scores''' [with top 1 result having the highest score]
30
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.\
31
  analyze the text : '''{text}'''
32
  """
 
154
  except:
155
  pass
156
 
157
+ prompt = f"""Analyse the patient json If asked for information take it from {patient_details}\
158
+ you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient json information ask previous: <description,symptoms,diagnosis,treatment talk about patient>As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
159
  first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start.
160
  if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues.
161
+ if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude.
162
+ Chat History:['''{history}''']
163
+ Patient: ['''{text}''']
 
 
164
  Perform as Mental Healthcare Doctor Chatbot
165
  """
166
  response = openai.Completion.create(
 
201
 
202
  customer_emotion_fig=self._display_graph(customer_emotion_score)
203
  customer_emotion_fig.update_layout(title="Emotion Analysis",width=770)
204
+ print("scores :{}",scores)
205
+ print("customer_fig :{}",customer_fig)
206
+ print("customer_emotion_fig :{}",customer_emotion_fig)
207
  return scores,customer_fig,customer_emotion_fig
208
 
209