from pydantic import NoneStr import os import mimetypes import validators import requests import tempfile import gradio as gr import openai import re import json from transformers import pipeline import matplotlib.pyplot as plt import plotly.express as px class SentimentAnalyzer: def __init__(self): self.model="facebook/bart-large-mnli" openai.api_key=os.getenv("OPENAI_API_KEY") def analyze_sentiment(self, text): pipe = pipeline("zero-shot-classification", model=self.model) label=["positive","negative","neutral"] result = pipe(text, label) sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]} sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}" return sentiment_scores_str def emotion_analysis(self,text): prompt = f""" Your task is to analyze {text} and predict the emotion using scores. Emotions are categorized into the following list: Sadness, Happiness, Joy, Fear, Disgust, and Anger. You need to provide the emotion with the highest score. The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion. Please analyze the text and provide the output in the following format: emotion: score [with one result having the highest score].""" response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=1, max_tokens=60, top_p=1, frequency_penalty=0, presence_penalty=0 ) message = response.choices[0].text.strip().replace("\n","") print(message) return message def analyze_sentiment_for_graph(self, text): pipe = pipeline("zero-shot-classification", model=self.model) label=["positive", "negative", "neutral"] result = pipe(text, label) sentiment_scores = { result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] } return sentiment_scores def emotion_analysis_for_graph(self,text): list_of_emotion=text.split(":") label=list_of_emotion[0] score=list_of_emotion[1] score_dict={ label:float(score) } print(score_dict) return score_dict class Summarizer: def __init__(self): openai.api_key=os.getenv("OPENAI_API_KEY") def generate_summary(self, text): model_engine = "text-davinci-003" prompt = f"""summarize the following conversation delimited by triple backticks. write within 30 words. ```{text}``` """ completions = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=60, n=1, stop=None, temperature=0.5, ) message = completions.choices[0].text.strip() return message history_state = gr.State() summarizer = Summarizer() sentiment = SentimentAnalyzer() class LangChain_Document_QA: def __init__(self): openai.api_key=os.getenv("OPENAI_API_KEY") def _add_text(self,history, text): history = history + [(text, None)] history_state.value = history return history,gr.update(value="", interactive=False) def _agent_text(self,history, text): response = text history[-1][1] = response history_state.value = history return history def _chat_history(self): history = history_state.value formatted_history = " " for entry in history: customer_text, agent_text = entry formatted_history += f"Patient: {customer_text}\n" if agent_text: formatted_history += f"Psycotherapist Bot: {agent_text}\n" return formatted_history def _display_history(self): formatted_history=self._chat_history() summary=summarizer.generate_summary(formatted_history) return summary def _display_graph(self,sentiment_scores): labels = sentiment_scores.keys() scores = sentiment_scores.values() fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"}) fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside') fig.update_layout(height=500, width=200) return fig def _history_of_chat(self): history = history_state.value formatted_history = "" client="" agent="" for entry in history: customer_text, agent_text = entry client+=customer_text formatted_history += f"Patient: {customer_text}\n" if agent_text: agent+=agent_text formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n" return client,agent def _suggested_answer(self,text): try: history = self._chat_history() try: file_path = "patient_details.json" with open(file_path) as file: patient_details = json.load(file) except: pass prompt = f"""As an empathic AI psychotherapist chatbot, provide effective solutions to patients' mental health concerns. if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude. Analyse the patient json If asked for information take it from {patient_details} Chat History:[{history}] Patient: [{text}] Perform as Mental Healthcare Doctor Chatbot """ response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=0, max_tokens=500, top_p=1, frequency_penalty=0, presence_penalty=0.6, ) message = response.choices[0].text.strip() if ":" in message: message = re.sub(r'^.*:', '', message) return message.strip() except: return "How can I help you?" def _text_box(self,customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score): agent_score = ", ".join([f"{key}: {value:.2f}" for key, value in agent_sentiment_score.items()]) customer_score = ", ".join([f"{key}: {value:.2f}" for key, value in customer_sentiment_score.items()]) return f"customer_emotion:{customer_emotion}\nagent_emotion:{agent_emotion}\nAgent_Sentiment_score:{agent_score}\nCustomer_sentiment_score:{customer_score}" def _on_sentiment_btn_click(self): client,agent=self._history_of_chat() customer_emotion=sentiment.emotion_analysis(client) customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client) agent_emotion=sentiment.emotion_analysis(agent) agent_sentiment_score = sentiment.analyze_sentiment_for_graph(agent) scores=self._text_box(customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score) customer_fig=self._display_graph(customer_sentiment_score) customer_fig.update_layout(title="Sentiment Analysis",width=770) agent_fig=self._display_graph(agent_sentiment_score) agent_fig.update_layout(title="Sentiment Analysis",width=770) agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion) agent_emotion_fig=self._display_graph(agent_emotion_score) agent_emotion_fig.update_layout(title="Emotion Analysis",width=770) customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion) customer_emotion_fig=self._display_graph(customer_emotion_score) customer_emotion_fig.update_layout(title="Emotion Analysis",width=770) return scores,customer_fig,agent_fig,customer_emotion_fig,agent_emotion_fig def clear_func(self): history_state.clear() def gradio_interface(self): with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo: with gr.Row(): gr.HTML("""