File size: 2,988 Bytes
fd1d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage
from langchain_core.messages import AIMessage
from langchain.memory import ChatMessageHistory
from langchain_openai import AzureChatOpenAI
from pypdf import PdfReader
import os
import gradio as gr

# chat = AzureChatOpenAI(azure_deployment = "GPT-3")

def extract_text( pdf_path):
    # creating a pdf reader object
    reader = PdfReader(pdf_path)
    all_text = ""

    for page in reader.pages:
        all_text += page.extract_text()
    return all_text

def get_response( candidate, resume, jd, chat_history):
    
    resume = extract_text(resume)
    jd = extract_text(jd)

    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                """Your Task is Perform as intelligent interviewer, Your Task is ask question to the resume's candidate by following candidate Answer.
                  at the end exit with greeting to the candidate.
                **Ask question follow up on the candidate response. get chat history.**
                """,
            ),
            MessagesPlaceholder(variable_name="messages"),
        ]
    )

    chain = prompt | chat  


    answer = chain.invoke(
        {
            "messages": [
                HumanMessage(
                    content=f" job description :{jd}\n Resume :{resume}"
                ),
                AIMessage(content=f"Perform as intelligent interviewer, Your Task is ask question to the resume's candidate by following candidate Answer:"),
                HumanMessage(content=candidate),
            ],
        }
    )
    # print("INTERVIEWER :", answer.content)
    # chat_history.append({"candidate":candidate,"interviewer":answer.content })

    result = answer.content
    chat_history.append({'candidate':candidate, "interviewer": result})
    print("chat_history", chat_history)
    return "", chat_history

def gradio_interface() -> None:
    """Create a Gradio interface for the chatbot."""
    with gr.Blocks(css = "style.css" ,theme="freddyaboulton/test-blue") as demo:

        gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center>
        <center><h1 class ="center" style="color:#fff">ADOPLE AI</h1></center>
        <br><center><h1 style="color:#fff">Screening Assistant Chatbot</h1></center>""")

        chatbot = gr.Chatbot()

        with gr.Row():
            with gr.Column(scale=1):    
                msg = gr.Textbox(label="Question")
      
        with gr.Row():
            with gr.Column(scale=0.15):
                resume = gr.File(label="Resume")
            with gr.Column(scale=0.15):
                jd = gr.File(label="Job Description")
            with gr.Column(scale=0.85):
                clear = gr.ClearButton([msg, chatbot])

        msg.submit(get_response, [msg, chatbot, resume, jd], [msg, chatbot])

    demo.launch(debug =True, share=True)   

gradio_interface()