Baskar2005
commited on
Upload 4 files
Browse files- Normal_dataset.zip +3 -0
- Tuberclosis_dataset.zip +3 -0
- app.py +171 -0
- requirements.txt +3 -0
Normal_dataset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1eef41a054a65d47a5bcbfd4620a64563a0d9624b402dd8666a92146efe13f1
|
3 |
+
size 796090
|
Tuberclosis_dataset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d16409f760033644d976755cbac28046c1822c87d1ca620e0205e185cf0e11c
|
3 |
+
size 379194
|
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from PIL import Image
|
3 |
+
from tensorflow import keras
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
from tensorflow.keras.preprocessing import image as keras_image
|
8 |
+
from huggingface_hub import from_pretrained_keras
|
9 |
+
from openai import AzureOpenAI
|
10 |
+
import gradio as gr
|
11 |
+
from zipfile import ZipFile
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
|
15 |
+
class DiseaseDetectionApp:
|
16 |
+
def __init__(self):
|
17 |
+
|
18 |
+
|
19 |
+
self.class_names =['Normal', 'Tuberculosis']
|
20 |
+
self.model =tf.keras.models.load_model("chest_xray_tuberclosis_prediction_model.keras")
|
21 |
+
self.client=AzureOpenAI()
|
22 |
+
|
23 |
+
|
24 |
+
def predict_disease(self, image_path):
|
25 |
+
"""
|
26 |
+
Predict the disease present in the X-Ray image.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
- image_data: PIL image data
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
- predicted_disease: string
|
33 |
+
"""
|
34 |
+
try:
|
35 |
+
|
36 |
+
# Load the image file, resizing it to the dimensions expected by the model
|
37 |
+
img = keras_image.load_img(image_path, target_size=(256, 256)) # Adjust target_size according to your model's expected input dimensions
|
38 |
+
|
39 |
+
# Convert the image to a numpy array
|
40 |
+
img_array = keras_image.img_to_array(img)
|
41 |
+
|
42 |
+
# Add an additional dimension to the array: (1, height, width, channels)
|
43 |
+
img_array = tf.expand_dims(img_array, 0) # Model expects a batch of images, but we're only passing a single image
|
44 |
+
# print(img_array)
|
45 |
+
# Make predictions
|
46 |
+
predictions = self.model.predict(img_array)
|
47 |
+
|
48 |
+
# Extract the predicted class and confidence
|
49 |
+
predict_class =self.class_names[np.argmax(predictions[0])]
|
50 |
+
confidence = round(100 * np.max(predictions[0]), 2)
|
51 |
+
return predict_class
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
logging.error(f"Error predicting disease: {str(e)}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
def classify_disease(self,image_path):
|
58 |
+
|
59 |
+
disease_name=self.predict_disease(image_path)
|
60 |
+
print(disease_name)
|
61 |
+
if disease_name=="Tuberculosis":
|
62 |
+
conversation = [
|
63 |
+
{"role": "system", "content": "You are a medical assistant"},
|
64 |
+
{"role": "user", "content": f""" your task describe(classify) about the given disease as a summary only in 3 lines.
|
65 |
+
```{disease_name}```
|
66 |
+
"""}
|
67 |
+
]
|
68 |
+
# Generate completion using ChatGPT model
|
69 |
+
response = self.client.chat.completions.create(
|
70 |
+
model="ChatGPT",
|
71 |
+
messages=conversation,
|
72 |
+
temperature=0,
|
73 |
+
max_tokens=1000
|
74 |
+
)
|
75 |
+
# Get the generated topics message
|
76 |
+
|
77 |
+
result = response.choices[0].message.content
|
78 |
+
return disease_name,result
|
79 |
+
|
80 |
+
elif disease_name=="Normal":
|
81 |
+
result="No problem in your xray image"
|
82 |
+
return disease_name,result
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
def unzip_image_data(self,filespath):
|
87 |
+
"""
|
88 |
+
Unzips an image dataset into a specified directory.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
str: The path to the directory containing the extracted image files.
|
92 |
+
"""
|
93 |
+
try:
|
94 |
+
with ZipFile(filespath,"r") as extract:
|
95 |
+
directory_path="dataset_image"
|
96 |
+
extract.extractall(f"{directory_path}")
|
97 |
+
return f"{directory_path}"
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
logging.error(f"An error occurred during extraction: {e}")
|
101 |
+
return ""
|
102 |
+
|
103 |
+
def example_images(self,filespath):
|
104 |
+
"""
|
105 |
+
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
List[str]: A list of file paths to each image in the dataset.
|
109 |
+
"""
|
110 |
+
image_dataset_folder = self.unzip_image_data(filespath)
|
111 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
112 |
+
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
|
113 |
+
example=[]
|
114 |
+
for i in range(image_count):
|
115 |
+
for name in os.listdir(image_dataset_folder):
|
116 |
+
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
|
117 |
+
example.append(path)
|
118 |
+
|
119 |
+
return example
|
120 |
+
|
121 |
+
def get_example_image(self):
|
122 |
+
normal_image="Normal_dataset.zip"
|
123 |
+
tuberclosis_image="Tuberclosis_dataset.zip"
|
124 |
+
|
125 |
+
normal_image_unziped=self.example_images(normal_image)
|
126 |
+
tuberclosis_image_unziped=self.example_images(tuberclosis_image)
|
127 |
+
|
128 |
+
return normal_image_unziped,tuberclosis_image_unziped
|
129 |
+
|
130 |
+
def gradio_interface(self):
|
131 |
+
|
132 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
133 |
+
gr.HTML("""<center><h1>Tuberclosis Disease Detection</h1></center>""")
|
134 |
+
|
135 |
+
normal_image,tuberclosis_image=self.get_example_image()
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
input_image =gr.Image(type="filepath",sources="upload")
|
139 |
+
with gr.Column():
|
140 |
+
output=gr.Label(label="Disease Name")
|
141 |
+
with gr.Row():
|
142 |
+
classify_disease_=gr.Textbox(label="About disease")
|
143 |
+
with gr.Row():
|
144 |
+
button =gr.Button(value="Detect The Disease")
|
145 |
+
|
146 |
+
button.click(self.classify_disease,[input_image],[output,classify_disease_])
|
147 |
+
|
148 |
+
gr.Examples(
|
149 |
+
examples=normal_image,
|
150 |
+
label="Normal X-ray Images",
|
151 |
+
inputs=[input_image],
|
152 |
+
outputs=[output,classify_disease_],
|
153 |
+
fn=self.classify_disease,
|
154 |
+
examples_per_page=5,
|
155 |
+
cache_examples=False)
|
156 |
+
|
157 |
+
gr.Examples(
|
158 |
+
examples=tuberclosis_image,
|
159 |
+
label="Tuberclosis X-ray Images",
|
160 |
+
inputs=[input_image],
|
161 |
+
outputs=[output,classify_disease_],
|
162 |
+
examples_per_page=5,
|
163 |
+
fn=self.classify_disease,
|
164 |
+
cache_examples=False)
|
165 |
+
|
166 |
+
|
167 |
+
demo.launch(debug=True)
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
app = DiseaseDetectionApp()
|
171 |
+
result=app.gradio_interface()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
gradio
|
3 |
+
tensorflow
|