File size: 12,509 Bytes
7f8dd93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
from stable_whisper import modify_model,results_to_word_srt, results_to_sentence_srt
import whisper
import pysrt
import re
import os
from copy import deepcopy
from typing import List
import os
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from langchain.document_loaders import UnstructuredPDFLoader
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import FreqDist
from nltk.metrics import jaccard_distance
from moviepy.video.io.VideoFileClip import VideoFileClip
from moviepy.video.VideoClip import ImageClip
from datetime import datetime
import gradio as gr
import nltk
nltk.download('stopwords')
nltk.download('punkt')
huggingfacehub_api_token = os.getenv("HF_TOKEN")
class VideoQA:
def __init__(self):
# self.loader = UnstructuredPDFLoader("/content/Document_ Introduction to Python (1).pdf")
# self.extracted_text=self.loader.load()
# self.huggingfacehub_api_token = # Replace with your Hugging Face token
self.repo_id = "mistralai/Mistral-7B-Instruct-v0.1"
self.llm = HuggingFaceHub(
huggingfacehub_api_token=huggingfacehub_api_token,
repo_id=self.repo_id,
model_kwargs={"temperature": 0.2, "max_new_tokens": 800}
)
def load_model(self,model_selected):
"""
Load a pre-trained machine learning model specified by the `model_selected` parameter
using the `whisper` library and modify it to output word timestamps.
Parameters:
-----------
model_selected : str
A string specifying the name of the pre-trained machine learning model to load.
Returns:
--------
model : object
A modified version of the loaded pre-trained machine learning model that outputs
timestamps for individual words.
"""
model = whisper.load_model(model_selected)
modify_model(model)
return model
def whisper_result_to_srt(self,result):
"""
Convert the output of the Whisper speech recognition model into SubRip subtitle format.
Parameters:
-----------
result : dict
A dictionary containing the output of the Whisper speech recognition model, including word-level
timestamps.
Returns:
--------
srt : str
A string in SubRip subtitle format, containing the word-level transcriptions and timing information
from the Whisper output.
Notes:
------
This function takes the output of the Whisper speech recognition model, which includes word-level timestamps
for each segment of the input audio file, and converts it into SubRip subtitle format. The resulting subtitle
file can be used to display captions or transcripts alongside a video recording of the original audio.
"""
text = []
for i,s in enumerate(result['segments']):
text.append(str(i+1))
time_start = s['start']
hours, minutes, seconds = int(time_start/3600), (time_start/60) % 60, (time_start) % 60
timestamp_start = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
timestamp_start = timestamp_start.replace('.',',')
time_end = s['end']
hours, minutes, seconds = int(time_end/3600), (time_end/60) % 60, (time_end) % 60
timestamp_end = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
timestamp_end = timestamp_end.replace('.',',')
text.append(timestamp_start + " --> " + timestamp_end)
text.append(s['text'].strip() + "\n")
return "\n".join(text)
# model_selected = 'tiny'
def transcribe_video(self,vid, model_selected):
"""
Transcribe the audio in a video file using a pre-trained machine learning model and return the transcription
and its corresponding timestamps in a subtitle format.
Parameters:
-----------
vid : str
A string specifying the path to the video file to be transcribed.
model_selected : str
A string specifying the name of the pre-trained machine learning model to use for transcription.
Returns:
--------
result : dict
A dictionary containing the transcription and its corresponding timestamps in a subtitle format.
"""
model = self.load_model(model_selected)
options = whisper.DecodingOptions(fp16=False)
result = model.transcribe(vid, **options.__dict__)
result['srt'] = self.whisper_result_to_srt(result)
return result
def to_srt(self,lines: List[dict], strip=False) -> str:
"""
lines: List[dict]
[{start:<start-timestamp-of-text>, end:<end-timestamp-of-text>, text:<str-of-text>}, ...]
"""
def secs_to_hhmmss(secs):
mm, ss = divmod(secs, 60)
hh, mm = divmod(mm, 60)
return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",")
srt_str = '\n'.join(
f'{i}\n'
f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n'
f'{sub["text"].strip() if strip else sub["text"]}\n'
for i, sub in enumerate(lines, 1))
# if save_path:
# with open(save_path, 'w', encoding='utf-8') as f:
# f.write(srt_str)
# print(f'Saved: {os.path.abspath(save_path)}')
return srt_str
def tighten_timestamps(self,res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict:
res = deepcopy(res)
for i in range(len(res['segments'])):
if start_at_first_word:
res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp']
if end_before_period and \
res['segments'][i]['word_timestamps'][-1] == '.' and \
len(res['segments'][i]['word_timestamps']) > 1:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp']
elif end_at_last_word:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp']
return res
def results_to_sentence_srt(self,res: dict,
end_at_last_word=False,
end_before_period=False,
start_at_first_word=False,
strip=False):
"""
Parameters
----------
res: dict
results from modified model
srt_path: str
output path of srt
end_at_last_word: bool
set end-of-sentence to timestamp-of-last-token
end_before_period: bool
set end-of-sentence to timestamp-of-last-non-period-token
start_at_first_word: bool
set start-of-sentence to timestamp-of-first-token
strip: bool
perform strip() on each sentence
"""
strict = any((end_at_last_word, end_before_period, start_at_first_word))
segs = self.tighten_timestamps(res,
end_at_last_word=end_at_last_word,
end_before_period=end_before_period,
start_at_first_word=start_at_first_word)['segments'] \
if strict else res['segments']
max_idx = len(segs) - 1
i = 1
while i <= max_idx:
if not (segs[i]['end'] - segs[i]['start']):
if segs[i - 1]['end'] == segs[i]['end']:
segs[i - 1]['text'] += (' ' + segs[i]['text'].strip())
del segs[i]
max_idx -= 1
continue
else:
segs[i]['start'] = segs[i - 1]['end']
i += 1
srt = self.to_srt(segs, strip=strip)
return srt
def extract_timestamps_and_text(self,input_text):
timestamp_pattern = re.compile(r'(\d{2}:\d{2}:\d{2}.\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2}.\d{3})\n(.+)')
matches = timestamp_pattern.findall(input_text)
data = []
for match in matches:
start_timestamp, end_timestamp, text = match
data.append({
'start_timestamp': start_timestamp,
'end_timestamp': end_timestamp,
'text': text.strip()
})
return data
def generate_contract(self,text,question):
template = """you are the german language and universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
extracted_text:{text}
user_question:{question}"""
prompt = PromptTemplate(template=template, input_variables=["text","question"])
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm)
result = llm_chain.run({"text":text,"question":question})
print()
print()
print("this is answer:",result)
return result
def preprocess_sentence(self,sentence):
stop_words = set(stopwords.words('english'))
words = word_tokenize(sentence.lower())
filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
return filtered_words
def compute_similarity(self,sentence1, sentence2):
words1 = self.preprocess_sentence(sentence1)
words2 = self.preprocess_sentence(sentence2)
freq_dist1 = FreqDist(words1)
freq_dist2 = FreqDist(words2)
jaccard = 1 - jaccard_distance(set(freq_dist1), set(freq_dist2))
return jaccard
def find_most_similar(self,sentence_list, target_sentence):
similarities = [self.compute_similarity(target_sentence, sentence) for sentence in sentence_list]
# Find the index of the most similar sentence
most_similar_index = similarities.index(max(similarities))
# Return the most similar sentence
return sentence_list[most_similar_index]
def start_end_timestamp(self,result,answer):
appended_text = []
for item in result:
appended_text.append(item['text'])
# Find the most similar sentence
matched_sentence = self.find_most_similar(appended_text, answer)
start_time=""
end_time=""
for entry in result:
if matched_sentence in entry['text']:
start_time = entry['start_timestamp']
end_time = entry['end_timestamp']
print(start_time+"\n"+end_time)
return start_time,end_time
def timestamp_to_seconds(self,timestamp):
time_format = "%H:%M:%S,%f"
dt = datetime.strptime(timestamp, time_format)
return dt.hour * 3600 + dt.minute * 60 + dt.second + dt.microsecond / 1e6
def cut_video(self,input_file, output_file, start_timestamp, end_timestamp):
# Convert timestamps to seconds
start_time = self.timestamp_to_seconds(start_timestamp)
end_time = self.timestamp_to_seconds(end_timestamp)
# Use moviepy to cut both video and audio
video_clip = VideoFileClip(input_file).subclip(start_time, end_time)
video_clip.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True)
def main(self,input_video_path,question):
subtitle = self.transcribe_video(input_video_path,'medium')
text = subtitle['text']
answer = self.generate_contract(text,question)
subrip_text = self.results_to_sentence_srt(subtitle)
result = self.extract_timestamps_and_text(subrip_text)
start_time,end_time = self.start_end_timestamp(result,answer)
output_video_path = 'output_video.mp4'
self.cut_video(input_video_path, output_video_path, start_time, end_time)
return output_video_path
def gradio_interface(self):
with gr.Blocks() as demo:
gr.HTML("""<center><h1>Video Question Answering</h1></center>""")
with gr.Row():
video = gr.Video()
with gr.Row():
query = gr.Textbox("Query")
with gr.Row():
output_video = gr.Video()
query.submit(self.main,[video,query],output_video)
demo.launch(debug=True)
if __name__=="__main__":
video_qa = VideoQA()
video_qa.gradio_interface()
|