File size: 20,356 Bytes
3de47d3 7f8dd93 3de47d3 7f8dd93 badcd53 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 b57ac3c 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 7f8dd93 3de47d3 1fd4926 3de47d3 30bb536 3de47d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
from stable_whisper import modify_model,results_to_word_srt, results_to_sentence_srt
import whisper
import pysrt
import re
from pytube import YouTube
import os
from copy import deepcopy
from typing import List
import os
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from langchain_community.document_loaders import UnstructuredPDFLoader
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import FreqDist
from nltk.metrics import jaccard_distance
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from moviepy.video.io.VideoFileClip import VideoFileClip
from moviepy.video.VideoClip import ImageClip
from datetime import datetime
import moviepy.editor as mpy
import gradio as gr
huggingfacehub_api_token = os.getenv("HF_TOKEN")
class VideoEditor():
def __init__(self):
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
self.llm = HuggingFaceHub(
huggingfacehub_api_token=huggingfacehub_api_token,
repo_id=repo_id,
model_kwargs={"temperature": 0.2,"max_new_tokens":1000}
)
# self.data_json = {'topics': []}
def load_model(self,model_selected):
"""
Load a pre-trained machine learning model specified by the `model_selected` parameter
using the `whisper` library and modify it to output word timestamps.
Parameters:
-----------
model_selected : str
A string specifying the name of the pre-trained machine learning model to load.
Returns:
--------
model : object
A modified version of the loaded pre-trained machine learning model that outputs
timestamps for individual words.
"""
model = whisper.load_model(model_selected)
modify_model(model)
return model
def whisper_result_to_srt(self,result):
"""
Convert the output of the Whisper speech recognition model into SubRip subtitle format.
Parameters:
-----------
result : dict
A dictionary containing the output of the Whisper speech recognition model, including word-level
timestamps.
Returns:
--------
srt : str
A string in SubRip subtitle format, containing the word-level transcriptions and timing information
from the Whisper output.
Notes:
------
This function takes the output of the Whisper speech recognition model, which includes word-level timestamps
for each segment of the input audio file, and converts it into SubRip subtitle format. The resulting subtitle
file can be used to display captions or transcripts alongside a video recording of the original audio.
"""
text = []
for i,s in enumerate(result['segments']):
text.append(str(i+1))
time_start = s['start']
hours, minutes, seconds = int(time_start/3600), (time_start/60) % 60, (time_start) % 60
timestamp_start = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
timestamp_start = timestamp_start.replace('.',',')
time_end = s['end']
hours, minutes, seconds = int(time_end/3600), (time_end/60) % 60, (time_end) % 60
timestamp_end = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
timestamp_end = timestamp_end.replace('.',',')
text.append(timestamp_start + " --> " + timestamp_end)
text.append(s['text'].strip() + "\n")
return "\n".join(text)
# model_selected = 'tiny'
def transcribe_video(self,vid, model_selected):
"""
Transcribe the audio in a video file using a pre-trained machine learning model and return the transcription
and its corresponding timestamps in a subtitle format.
Parameters:
-----------
vid : str
A string specifying the path to the video file to be transcribed.
model_selected : str
A string specifying the name of the pre-trained machine learning model to use for transcription.
Returns:
--------
result : dict
A dictionary containing the transcription and its corresponding timestamps in a subtitle format.
"""
model = self.load_model(model_selected)
options = whisper.DecodingOptions(fp16=False)
result = model.transcribe(vid, **options.__dict__)
result['srt'] = self.whisper_result_to_srt(result)
return result
def to_srt(self,lines: List[dict], strip=False) -> str:
"""
lines: List[dict]
[{start:<start-timestamp-of-text>, end:<end-timestamp-of-text>, text:<str-of-text>}, ...]
"""
def secs_to_hhmmss(secs):
mm, ss = divmod(secs, 60)
hh, mm = divmod(mm, 60)
return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",")
srt_str = '\n'.join(
f'{i}\n'
f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n'
f'{sub["text"].strip() if strip else sub["text"]}\n'
for i, sub in enumerate(lines, 1))
# if save_path:
# with open(save_path, 'w', encoding='utf-8') as f:
# f.write(srt_str)
# print(f'Saved: {os.path.abspath(save_path)}')
return srt_str
def tighten_timestamps(self,res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict:
res = deepcopy(res)
for i in range(len(res['segments'])):
if start_at_first_word:
res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp']
if end_before_period and \
res['segments'][i]['word_timestamps'][-1] == '.' and \
len(res['segments'][i]['word_timestamps']) > 1:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp']
elif end_at_last_word:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp']
return res
def results_to_sentence_srt(self,res: dict,
end_at_last_word=False,
end_before_period=False,
start_at_first_word=False,
strip=False):
"""
Parameters
----------
res: dict
results from modified model
srt_path: str
output path of srt
end_at_last_word: bool
set end-of-sentence to timestamp-of-last-token
end_before_period: bool
set end-of-sentence to timestamp-of-last-non-period-token
start_at_first_word: bool
set start-of-sentence to timestamp-of-first-token
strip: bool
perform strip() on each sentence
"""
strict = any((end_at_last_word, end_before_period, start_at_first_word))
segs = self.tighten_timestamps(res,
end_at_last_word=end_at_last_word,
end_before_period=end_before_period,
start_at_first_word=start_at_first_word)['segments'] \
if strict else res['segments']
max_idx = len(segs) - 1
i = 1
while i <= max_idx:
if not (segs[i]['end'] - segs[i]['start']):
if segs[i - 1]['end'] == segs[i]['end']:
segs[i - 1]['text'] += (' ' + segs[i]['text'].strip())
del segs[i]
max_idx -= 1
continue
else:
segs[i]['start'] = segs[i - 1]['end']
i += 1
srt = self.to_srt(segs, strip=strip)
return srt
def extract_timestamps_and_text(self,input_text):
timestamp_pattern = re.compile(r'(\d{2}:\d{2}:\d{2}.\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2}.\d{3})\n(.+)')
matches = timestamp_pattern.findall(input_text)
data = []
for match in matches:
start_timestamp, end_timestamp, text = match
data.append({
'start_timestamp': start_timestamp,
'end_timestamp': end_timestamp,
'text': text.strip()
})
return data
def sentence_timestamp(self,data):
result_sentences = []
current_sentence = ""
current_start_timestamp = ""
for entry in data:
text = entry['text']
start_timestamp = entry['start_timestamp']
end_timestamp = entry['end_timestamp']
# If the current sentence is empty, update start timestamp
if not current_sentence:
current_start_timestamp = start_timestamp
# Concatenate sentences until a sentence ends with a full stop
current_sentence += " " + text
if text.endswith('.'):
result_sentences.append({
'start_timestamp': current_start_timestamp,
'end_timestamp': end_timestamp,
'text': current_sentence.strip()
})
current_sentence = ""
return result_sentences
def timestamp_text_to_list(self,result_sentences):
text_list = [item['text'] for item in result_sentences]
return text_list
def list_to_json(self,text_list):
jsonfile = {
"sentences": text_list
}
json_text = str(jsonfile)
return json_text
def video_qa_generate_contract(self,text,question):
template = """you are the german language and universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
extracted_text:{text}
user_question:{question}"""
prompt = PromptTemplate(template=template, input_variables=["text","question"])
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm)
result = llm_chain.run({"text":text,"question":question})
print()
print()
print("this is answer:",result)
return result
def topic_generate_contract(self,json_text,subrip):
template = """your first task is extract all topics discussed in the given content.
second task is analyze the given paragraph and extract answer for the first task's extracted topics.
don't genarate answer yourself just extract related answer from the given paragraph.
returing answer format:
Topic:Topic
Sentence:*Topic* Sentence
```content:{content}```
```paragraph:{paragraph}```
"""
prompt = PromptTemplate(template=template, input_variables=["content","paragraph"])
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm)
result = llm_chain.run({"content":json_text,"paragraph":subrip['text']})
return result
def video_qa_preprocess_sentence(self,sentence):
stop_words = set(stopwords.words('english'))
words = word_tokenize(sentence.lower())
filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
return filtered_words
def compute_similarity(self,sentence1, sentence2):
words1 = self.video_qa_preprocess_sentence(sentence1)
words2 = self.video_qa_preprocess_sentence(sentence2)
freq_dist1 = FreqDist(words1)
freq_dist2 = FreqDist(words2)
jaccard = 1 - jaccard_distance(set(freq_dist1), set(freq_dist2))
return jaccard
def video_qa_find_most_similar(self,sentence_list, target_sentence):
similarities = [self.compute_similarity(target_sentence, sentence) for sentence in sentence_list]
# Find the index of the most similar sentence
most_similar_index = similarities.index(max(similarities))
# Return the most similar sentence
return sentence_list[most_similar_index]
def video_qa_start_end_timestamp(self,result,answer):
appended_text = []
for item in result:
appended_text.append(item['text'])
# Find the most similar sentence
matched_sentence = self.video_qa_find_most_similar(appended_text, answer)
start_time=""
end_time=""
for entry in result:
if matched_sentence in entry['text']:
start_time = entry['start_timestamp']
end_time = entry['end_timestamp']
print(start_time+"\n"+end_time)
return start_time,end_time
# Function to preprocess and tokenize a sentence
def preprocess_sentence(self,sentence):
stop_words = set(stopwords.words('english'))
ps = PorterStemmer()
# Tokenize and remove stopwords
words = word_tokenize(sentence)
words = [ps.stem(word.lower()) for word in words if word.isalnum() and word.lower() not in stop_words]
return ' '.join(words)
# Function to find the most similar sentence in list1 for a given sentence in list2
def topic_find_most_similar(self,sentence, list1):
similarities = []
processed_sentence = self.preprocess_sentence(sentence)
for candidate_sentence in list1:
similarity = self.calculate_cosine_similarity(processed_sentence, candidate_sentence)
similarities.append(similarity)
# Find the index of the most similar sentence in list1
max_similarity_index = similarities.index(max(similarities))
return list1[max_similarity_index]
# Function to calculate cosine similarity between two sentences
def calculate_cosine_similarity(self,sentence1, sentence2):
# Create a TF-IDF vectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform([sentence1, sentence2])
# Calculate cosine similarity
cosine_sim = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
return cosine_sim
def timestamp_to_seconds(self,timestamp):
time_format = "%H:%M:%S,%f"
dt = datetime.strptime(timestamp, time_format)
return dt.hour * 3600 + dt.minute * 60 + dt.second + dt.microsecond / 1e6
def cut_video(self,input_file, output_file, start_timestamp, end_timestamp):
# Convert timestamps to seconds
start_time = self.timestamp_to_seconds(start_timestamp)
end_time = self.timestamp_to_seconds(end_timestamp)
# Use moviepy to cut both video and audio
video_clip = VideoFileClip(input_file).subclip(start_time, end_time)
video_clip.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True)
def start_end_timestamp(self,result,matched_sentence):
start_time=""
end_time=""
for entry in result:
if matched_sentence in entry['text']:
start_time = entry['start_timestamp']
end_time = entry['end_timestamp']
# print(start_time+"\n"+end_time)
return start_time,end_time
def video_write_funcion(self,vid,answer,text_list,result_sentences):
video = mpy.VideoFileClip(vid)
topics = {}
topics_list = answer.strip().split("\n\n") # Remove leading/trailing whitespaces
for topic in topics_list:
lines = topic.split("\n")
if len(lines) > 0:
topic = lines[0].split(":")[1].strip()
sentence = "".join([line.split(":")[1].strip() for line in lines[1:]])
sentence_list = sentence.split(".")
unique_similar_sentences = []
list1 = text_list
# Find the most similar sentence in list1 for each sentence in list2
for sentence2 in sentence_list:
most_similar_sentence = self.topic_find_most_similar(sentence2, list1)
# Check if the sentence is not already in the list before appending
if most_similar_sentence not in unique_similar_sentences:
unique_similar_sentences.append(most_similar_sentence)
# Print the unique most similar sentences
clips = []
for sentence in unique_similar_sentences:
# print(type(sentence))
start_time,end_time = self.start_end_timestamp(result_sentences,sentence)
clip = video.subclip(start_time, end_time)
clips.append(clip)
concatenated_clip = mpy.concatenate_videoclips(clips)
topics[topic] = concatenated_clip
for topic, clip in topics.items():
clip.write_videofile(f"{topic}.mp4")
def video_qa_main(self,input_path,video,question):
if input_path:
input_path = self.Download(input_path)
subtitle = self.transcribe_video(input_path,'medium')
elif video:
subtitle = self.transcribe_video(video,'medium')
input_path = video
print(subtitle['text'])
text = subtitle['text']
answer = self.video_qa_generate_contract(text,question)
print("video_qa_generate_contract")
subrip_text = self.results_to_sentence_srt(subtitle)
result = self.extract_timestamps_and_text(subrip_text)
sent = self.sentence_timestamp(result)
start_time,end_time = self.video_qa_start_end_timestamp(sent,answer)
output_video_path = 'output_video.mp4'
self.cut_video(input_path, output_video_path, start_time, end_time)
return output_video_path
def Download(self,link):
youtubeObject = YouTube(link)
youtubeObject = youtubeObject.streams.get_highest_resolution()
try:
file_name = youtubeObject.download()
return file_name
except:
print("An error has occurred")
print("Download is completed successfully")
def topic_main(self,input_path,video):
if input_path:
input_path = self.Download(input_path)
subrip = self.transcribe_video(input_path,'medium')
elif video:
subrip = self.transcribe_video(video,'medium')
input_path = video
print(subrip['text'])
text = self.results_to_sentence_srt(subrip)
print("results_to_sentence_srt")
data = self.extract_timestamps_and_text(text)
print("extract_timestamps_and_text")
result_sentences = self.sentence_timestamp(data)
text_list = self.timestamp_text_to_list(result_sentences)
# print(text_list)
json_text = self.list_to_json(text_list)
# print(json_text)
print("list_to_json")
answer = self.topic_generate_contract(json_text,subrip)
# print(answer)
print("topic_generate_contract")
self.video_write_funcion(input_path,answer,text_list,result_sentences)
return "Topic Video Writted Successfully."
with gr.Blocks(css="style.css",theme="freddyaboulton/test-blue") as demo:
video_editor = VideoEditor()
gr.HTML("""<center><h1>Video Question Answering & Topic Extracter</h1></center>""")
with gr.Tab("Video QA"):
with gr.Row():
youtube_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=")
with gr.Row():
video = gr.Video(sources="upload",height=200,width=300)
with gr.Row():
query = gr.Textbox(label="Query")
with gr.Row():
output_video = gr.Video(height=200,width=300)
# if video and query:
# submit_btn.click(video_editor.video_qa_main,[video,query],output_video)
# elif youtube_link and query:
query.submit(video_editor.video_qa_main,[youtube_link,video,query],output_video)
with gr.Tab("Topic Extract"):
with gr.Row():
yt_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=")
with gr.Row():
video = gr.Video(sources="upload",height=200,width=300)
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
textbox = gr.Textbox(label = "Status")
submit_btn.click(video_editor.topic_main,[yt_link,video],textbox)
demo.launch() |