File size: 20,356 Bytes
3de47d3
7f8dd93
 
 
 
3de47d3
7f8dd93
 
 
 
 
badcd53
7f8dd93
 
 
 
3de47d3
 
 
 
 
 
 
 
7f8dd93
 
 
3de47d3
7f8dd93
 
 
3de47d3
7f8dd93
 
3de47d3
 
 
 
 
 
 
7f8dd93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3de47d3
 
 
 
 
7f8dd93
3de47d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dd93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3de47d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dd93
 
 
 
 
 
3de47d3
 
7f8dd93
 
 
 
 
 
 
 
3de47d3
7f8dd93
 
 
 
 
 
 
 
 
3de47d3
7f8dd93
 
 
 
 
 
3de47d3
7f8dd93
 
 
 
 
 
 
 
 
3de47d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dd93
3de47d3
7f8dd93
 
 
 
 
 
 
 
 
 
 
 
 
 
b57ac3c
3de47d3
 
 
 
 
 
 
 
 
7f8dd93
3de47d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8dd93
3de47d3
 
7f8dd93
 
 
3de47d3
 
7f8dd93
 
3de47d3
7f8dd93
 
3de47d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd4926
3de47d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30bb536
3de47d3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

from stable_whisper import modify_model,results_to_word_srt, results_to_sentence_srt
import whisper
import pysrt
import re
from pytube import YouTube
import os
from copy import deepcopy
from typing import List
import os
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from langchain_community.document_loaders import UnstructuredPDFLoader
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import FreqDist
from nltk.metrics import jaccard_distance
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from moviepy.video.io.VideoFileClip import VideoFileClip
from moviepy.video.VideoClip import ImageClip
from datetime import datetime
import moviepy.editor as mpy
import gradio as gr

huggingfacehub_api_token = os.getenv("HF_TOKEN")
class VideoEditor():

    def __init__(self):
      repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
      self.llm = HuggingFaceHub(
          huggingfacehub_api_token=huggingfacehub_api_token,
          repo_id=repo_id,
          model_kwargs={"temperature": 0.2,"max_new_tokens":1000}
      )
      # self.data_json = {'topics': []}


    def load_model(self,model_selected):
      """
      Load a pre-trained machine learning model specified by the `model_selected` parameter
      using the `whisper` library and modify it to output word timestamps.

      Parameters:
      -----------
      model_selected : str
          A string specifying the name of the pre-trained machine learning model to load.

      Returns:
      --------
      model : object
          A modified version of the loaded pre-trained machine learning model that outputs
          timestamps for individual words.

      """
      model = whisper.load_model(model_selected)
      modify_model(model)
      return model

    def whisper_result_to_srt(self,result):
        """
        Convert the output of the Whisper speech recognition model into SubRip subtitle format.

        Parameters:
        -----------
        result : dict
            A dictionary containing the output of the Whisper speech recognition model, including word-level
            timestamps.

        Returns:
        --------
        srt : str
            A string in SubRip subtitle format, containing the word-level transcriptions and timing information
            from the Whisper output.

        Notes:
        ------
        This function takes the output of the Whisper speech recognition model, which includes word-level timestamps
        for each segment of the input audio file, and converts it into SubRip subtitle format. The resulting subtitle
        file can be used to display captions or transcripts alongside a video recording of the original audio.
        """
        text = []
        for i,s in enumerate(result['segments']):
            text.append(str(i+1))
            time_start = s['start']
            hours, minutes, seconds = int(time_start/3600), (time_start/60) % 60, (time_start) % 60
            timestamp_start = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
            timestamp_start = timestamp_start.replace('.',',')
            time_end = s['end']
            hours, minutes, seconds = int(time_end/3600), (time_end/60) % 60, (time_end) % 60
            timestamp_end = "%02d:%02d:%06.3f" % (hours, minutes, seconds)
            timestamp_end = timestamp_end.replace('.',',')
            text.append(timestamp_start + " --> " + timestamp_end)
            text.append(s['text'].strip() + "\n")
        return "\n".join(text)

    # model_selected  = 'tiny'
    def transcribe_video(self,vid, model_selected):
        """
        Transcribe the audio in a video file using a pre-trained machine learning model and return the transcription
        and its corresponding timestamps in a subtitle format.

        Parameters:
        -----------
        vid : str
            A string specifying the path to the video file to be transcribed.
        model_selected : str
            A string specifying the name of the pre-trained machine learning model to use for transcription.

        Returns:
        --------
        result : dict
            A dictionary containing the transcription and its corresponding timestamps in a subtitle format.

        """
        model = self.load_model(model_selected)
        options = whisper.DecodingOptions(fp16=False)
        result = model.transcribe(vid, **options.__dict__)
        result['srt'] = self.whisper_result_to_srt(result)
        return result

    def to_srt(self,lines: List[dict], strip=False) -> str:
        """
        lines: List[dict]
            [{start:<start-timestamp-of-text>, end:<end-timestamp-of-text>, text:<str-of-text>}, ...]
        """

        def secs_to_hhmmss(secs):
            mm, ss = divmod(secs, 60)
            hh, mm = divmod(mm, 60)
            return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",")

        srt_str = '\n'.join(
            f'{i}\n'
            f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n'
            f'{sub["text"].strip() if strip else sub["text"]}\n'
            for i, sub in enumerate(lines, 1))

        # if save_path:
        #     with open(save_path, 'w', encoding='utf-8') as f:
        #         f.write(srt_str)
        #     print(f'Saved: {os.path.abspath(save_path)}')

        return srt_str

    def tighten_timestamps(self,res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict:
        res = deepcopy(res)
        for i in range(len(res['segments'])):
            if start_at_first_word:
                res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp']
            if end_before_period and \
                    res['segments'][i]['word_timestamps'][-1] == '.' and \
                    len(res['segments'][i]['word_timestamps']) > 1:
                res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp']
            elif end_at_last_word:
                res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp']

        return res

    def results_to_sentence_srt(self,res: dict,
                                end_at_last_word=False,
                                end_before_period=False,
                                start_at_first_word=False,
                                strip=False):
        """

        Parameters
        ----------
        res: dict
            results from modified model
        srt_path: str
            output path of srt
        end_at_last_word: bool
            set end-of-sentence to timestamp-of-last-token
        end_before_period: bool
            set end-of-sentence to timestamp-of-last-non-period-token
        start_at_first_word: bool
            set start-of-sentence to timestamp-of-first-token
        strip: bool
            perform strip() on each sentence

        """
        strict = any((end_at_last_word, end_before_period, start_at_first_word))
        segs = self.tighten_timestamps(res,
                                  end_at_last_word=end_at_last_word,
                                  end_before_period=end_before_period,
                                  start_at_first_word=start_at_first_word)['segments'] \
            if strict else res['segments']

        max_idx = len(segs) - 1
        i = 1
        while i <= max_idx:
            if not (segs[i]['end'] - segs[i]['start']):
                if segs[i - 1]['end'] == segs[i]['end']:
                    segs[i - 1]['text'] += (' ' + segs[i]['text'].strip())
                    del segs[i]
                    max_idx -= 1
                    continue
                else:
                    segs[i]['start'] = segs[i - 1]['end']
            i += 1

        srt = self.to_srt(segs, strip=strip)
        return srt

    def extract_timestamps_and_text(self,input_text):
        timestamp_pattern = re.compile(r'(\d{2}:\d{2}:\d{2}.\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2}.\d{3})\n(.+)')

        matches = timestamp_pattern.findall(input_text)

        data = []

        for match in matches:
            start_timestamp, end_timestamp, text = match
            data.append({
                'start_timestamp': start_timestamp,
                'end_timestamp': end_timestamp,
                'text': text.strip()
            })

        return data

    def sentence_timestamp(self,data):
      result_sentences = []

      current_sentence = ""
      current_start_timestamp = ""

      for entry in data:
          text = entry['text']
          start_timestamp = entry['start_timestamp']
          end_timestamp = entry['end_timestamp']

          # If the current sentence is empty, update start timestamp
          if not current_sentence:
              current_start_timestamp = start_timestamp

          # Concatenate sentences until a sentence ends with a full stop
          current_sentence += " " + text
          if text.endswith('.'):
              result_sentences.append({
                  'start_timestamp': current_start_timestamp,
                  'end_timestamp': end_timestamp,
                  'text': current_sentence.strip()
              })
              current_sentence = ""
      return result_sentences

    def timestamp_text_to_list(self,result_sentences):
      text_list = [item['text'] for item in result_sentences]

      return text_list

    def list_to_json(self,text_list):
      jsonfile = {
          "sentences": text_list
      }
      json_text = str(jsonfile)
      return json_text


    def video_qa_generate_contract(self,text,question):


        template = """you are the german language and universal language expert .your task is  analyze the given  text and user ask any question about given text answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
        extracted_text:{text}
        user_question:{question}"""

        prompt = PromptTemplate(template=template, input_variables=["text","question"])
        llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm)

        result = llm_chain.run({"text":text,"question":question})
        print()
        print()
        print("this is answer:",result)
        return result


    def topic_generate_contract(self,json_text,subrip):


          template = """your first task is extract all topics discussed in the given content.

          second task is analyze the given  paragraph and extract answer for the first task's extracted topics.
          don't genarate answer yourself just extract  related answer from the given paragraph.

          returing answer format:
          Topic:Topic
          Sentence:*Topic* Sentence

          ```content:{content}```
          ```paragraph:{paragraph}```
          """

          prompt = PromptTemplate(template=template, input_variables=["content","paragraph"])
          llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm)

          result = llm_chain.run({"content":json_text,"paragraph":subrip['text']})
          return result


    def video_qa_preprocess_sentence(self,sentence):
        stop_words = set(stopwords.words('english'))
        words = word_tokenize(sentence.lower())
        filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
        return filtered_words

    def compute_similarity(self,sentence1, sentence2):
        words1 = self.video_qa_preprocess_sentence(sentence1)
        words2 = self.video_qa_preprocess_sentence(sentence2)

        freq_dist1 = FreqDist(words1)
        freq_dist2 = FreqDist(words2)

        jaccard = 1 - jaccard_distance(set(freq_dist1), set(freq_dist2))

        return jaccard

    def video_qa_find_most_similar(self,sentence_list, target_sentence):
        similarities = [self.compute_similarity(target_sentence, sentence) for sentence in sentence_list]

        # Find the index of the most similar sentence
        most_similar_index = similarities.index(max(similarities))

        # Return the most similar sentence
        return sentence_list[most_similar_index]


    def video_qa_start_end_timestamp(self,result,answer):
      appended_text = []

      for item in result:
          appended_text.append(item['text'])

      # Find the most similar sentence
      matched_sentence = self.video_qa_find_most_similar(appended_text, answer)
      start_time=""
      end_time=""
      for entry in result:
        if matched_sentence in entry['text']:
          start_time = entry['start_timestamp']
          end_time = entry['end_timestamp']
          print(start_time+"\n"+end_time)
      return start_time,end_time

    # Function to preprocess and tokenize a sentence
    def preprocess_sentence(self,sentence):
        stop_words = set(stopwords.words('english'))
        ps = PorterStemmer()

        # Tokenize and remove stopwords
        words = word_tokenize(sentence)
        words = [ps.stem(word.lower()) for word in words if word.isalnum() and word.lower() not in stop_words]

        return ' '.join(words)

    # Function to find the most similar sentence in list1 for a given sentence in list2
    def topic_find_most_similar(self,sentence, list1):
        similarities = []
        processed_sentence = self.preprocess_sentence(sentence)

        for candidate_sentence in list1:
            similarity = self.calculate_cosine_similarity(processed_sentence, candidate_sentence)
            similarities.append(similarity)

        # Find the index of the most similar sentence in list1
        max_similarity_index = similarities.index(max(similarities))

        return list1[max_similarity_index]

    # Function to calculate cosine similarity between two sentences
    def calculate_cosine_similarity(self,sentence1, sentence2):
        # Create a TF-IDF vectorizer
        vectorizer = TfidfVectorizer()
        tfidf_matrix = vectorizer.fit_transform([sentence1, sentence2])

        # Calculate cosine similarity
        cosine_sim = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]

        return cosine_sim

    def timestamp_to_seconds(self,timestamp):
        time_format = "%H:%M:%S,%f"
        dt = datetime.strptime(timestamp, time_format)
        return dt.hour * 3600 + dt.minute * 60 + dt.second + dt.microsecond / 1e6

    def cut_video(self,input_file, output_file, start_timestamp, end_timestamp):
        # Convert timestamps to seconds
        start_time = self.timestamp_to_seconds(start_timestamp)
        end_time = self.timestamp_to_seconds(end_timestamp)

        # Use moviepy to cut both video and audio
        video_clip = VideoFileClip(input_file).subclip(start_time, end_time)
        video_clip.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True)

    def start_end_timestamp(self,result,matched_sentence):
      start_time=""
      end_time=""
      for entry in result:
        if matched_sentence in entry['text']:
          start_time = entry['start_timestamp']
          end_time = entry['end_timestamp']
          # print(start_time+"\n"+end_time)
      return start_time,end_time

    def video_write_funcion(self,vid,answer,text_list,result_sentences):
        video = mpy.VideoFileClip(vid)
        topics = {}
        topics_list = answer.strip().split("\n\n")  # Remove leading/trailing whitespaces
        for topic in topics_list:
            lines = topic.split("\n")
            if len(lines) > 0:
                topic = lines[0].split(":")[1].strip()
                sentence = "".join([line.split(":")[1].strip() for line in lines[1:]])

            sentence_list = sentence.split(".")
            unique_similar_sentences = []
            list1 = text_list
            # Find the most similar sentence in list1 for each sentence in list2
            for sentence2 in sentence_list:
                most_similar_sentence = self.topic_find_most_similar(sentence2, list1)

                # Check if the sentence is not already in the list before appending
                if most_similar_sentence not in unique_similar_sentences:
                    unique_similar_sentences.append(most_similar_sentence)

            # Print the unique most similar sentences
            clips = []
            for sentence in unique_similar_sentences:
                # print(type(sentence))
                start_time,end_time = self.start_end_timestamp(result_sentences,sentence)
                clip = video.subclip(start_time, end_time)
                clips.append(clip)
            concatenated_clip = mpy.concatenate_videoclips(clips)
            topics[topic] = concatenated_clip

        for topic, clip in topics.items():
            clip.write_videofile(f"{topic}.mp4")


    def video_qa_main(self,input_path,video,question):
      if input_path:
        input_path = self.Download(input_path)
        subtitle = self.transcribe_video(input_path,'medium')
      elif video:
        subtitle = self.transcribe_video(video,'medium')
        input_path = video
      print(subtitle['text'])
      text = subtitle['text']
      answer = self.video_qa_generate_contract(text,question)
      print("video_qa_generate_contract")

      subrip_text  = self.results_to_sentence_srt(subtitle)
      result = self.extract_timestamps_and_text(subrip_text)
      sent = self.sentence_timestamp(result)
      start_time,end_time = self.video_qa_start_end_timestamp(sent,answer)
      output_video_path = 'output_video.mp4'

      self.cut_video(input_path, output_video_path, start_time, end_time)
      return output_video_path

    def Download(self,link):
        youtubeObject = YouTube(link)
        youtubeObject = youtubeObject.streams.get_highest_resolution()
        try:
            file_name = youtubeObject.download()
            return file_name
        except:
            print("An error has occurred")
        print("Download is completed successfully")

    def topic_main(self,input_path,video):

      if input_path:
        input_path = self.Download(input_path)
        subrip = self.transcribe_video(input_path,'medium')
      elif video:
        subrip = self.transcribe_video(video,'medium')
        input_path = video
      print(subrip['text'])
      text = self.results_to_sentence_srt(subrip)
      print("results_to_sentence_srt")
      data = self.extract_timestamps_and_text(text)
      print("extract_timestamps_and_text")
      result_sentences = self.sentence_timestamp(data)
      text_list = self.timestamp_text_to_list(result_sentences)
      # print(text_list)
      json_text = self.list_to_json(text_list)
      # print(json_text)
      print("list_to_json")
      answer = self.topic_generate_contract(json_text,subrip)
      # print(answer)
      print("topic_generate_contract")
      self.video_write_funcion(input_path,answer,text_list,result_sentences)
      return "Topic Video Writted Successfully."


with gr.Blocks(css="style.css",theme="freddyaboulton/test-blue") as demo:
  video_editor = VideoEditor()
  gr.HTML("""<center><h1>Video Question Answering & Topic Extracter</h1></center>""")
  with gr.Tab("Video QA"):
    with gr.Row():
      youtube_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=")
    with gr.Row():
      video = gr.Video(sources="upload",height=200,width=300)
    with gr.Row():
      query = gr.Textbox(label="Query")

    with gr.Row():
      output_video = gr.Video(height=200,width=300)

    # if video and query:
    #   submit_btn.click(video_editor.video_qa_main,[video,query],output_video)
    # elif youtube_link and query:
    query.submit(video_editor.video_qa_main,[youtube_link,video,query],output_video)
  with gr.Tab("Topic Extract"):
    with gr.Row():
      yt_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=")
    with gr.Row():
      video = gr.Video(sources="upload",height=200,width=300)
    with gr.Row():
      submit_btn = gr.Button(value="Submit")
    with gr.Row():
      textbox = gr.Textbox(label = "Status")

      submit_btn.click(video_editor.topic_main,[yt_link,video],textbox)
demo.launch()