Video_QA / stable_whisper.py
robertselvam's picture
Upload stable_whisper.py
c3d5eb3
raw
history blame
66.8 kB
import ffmpeg
import whisper
import warnings
import numpy as np
import torch
from torch import Tensor
from torch.nn import functional as F
from torch.distributions import Categorical
from typing import List, Optional, Tuple, Union
from whisper.audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
from whisper.decoding import DecodingOptions, DecodingResult
from whisper.tokenizer import LANGUAGES
from whisper.utils import exact_div, format_timestamp, compression_ratio
from whisper.model import Whisper
from whisper.decoding import DecodingTask, BeamSearchDecoder, GreedyDecoder
from whisper.tokenizer import Tokenizer, get_tokenizer
from types import MethodType
from itertools import chain, repeat
from copy import deepcopy
import os
import json
# no_caption changed to no_speech newer commits
def get_new_attrs(obj_, attr: str):
if attr == 'no_caption_probs':
return getattr(obj_, attr) if hasattr(obj_, 'no_caption_probs') else getattr(obj_, 'no_speech_probs')
elif attr == 'no_caption_prob':
return getattr(obj_, attr) if hasattr(obj_, 'no_caption_prob') else getattr(obj_, 'no_speech_prob')
elif attr == 'no_captions':
return getattr(obj_, attr) if hasattr(obj_, 'no_captions') else getattr(obj_, 'no_speech')
else:
raise NotImplementedError(attr)
def check_ascending_sequence(seq: Union[List[Union[int, float]], np.ndarray], verbose=True) -> bool:
"""
check if a sequence of numbers are in ascending order
"""
is_ascending = True
for idx, (i, j) in enumerate(zip(seq[:-1], seq[1:])):
if i > j:
is_ascending = False
if verbose:
print(f'[Index{idx}]:{i} > [Index{idx + 1}]:{j}')
else:
break
return is_ascending
def check_ascending_sentence_ts(res: (dict, list)) -> bool:
segs = res['segments'] if isinstance(res, dict) else res
return check_ascending_sequence(list(chain.from_iterable((float(i['start']), float(i['end']))
for i in segs)))
def check_ascending_word_ts(res: (dict, list)) -> bool:
cc = group_word_timestamps(res['segments'] if isinstance(res, dict) else res, ts_key='word_timestamps')
return check_ascending_sequence((list(chain.from_iterable((float(i['start']), float(i['end']))
for i in cc))))
def is_equal_ts(a: (float, int, np.ndarray), b: (float, int, np.ndarray), rtol=1e-03):
"""
check if timestamp a and timestamp b are equal within the relative tolerance (rtol)
"""
return np.isclose(a, b, rtol=rtol)
def check_is_same_results(res0: (dict, list), res1: (dict, list), check_unstable=False) -> bool:
"""
check if res0 and res1 have same timestamps
"""
if isinstance(res0, dict):
res0 = res0['segments']
if isinstance(res1, dict):
res1 = res1['segments']
ts_key = 'unstable_word_timestamps' if check_unstable else 'word_timestamps'
inner_ts_key = 'timestamps' if check_unstable else 'timestamp'
def _reduce(x):
if isinstance(x, np.ndarray):
return set(tuple(x)) == {True}
return x
t = set(set(_reduce(is_equal_ts(a[inner_ts_key], b[inner_ts_key])) for a, b in zip(i[ts_key], j[ts_key])) == {True}
for i, j in zip(res0['segments'], res1['segments']))
return t == {True}
def to_srt(lines: List[dict], save_path: str = None, strip=False) -> str:
"""
lines: List[dict]
[{start:<start-timestamp-of-text>, end:<end-timestamp-of-text>, text:<str-of-text>}, ...]
"""
def secs_to_hhmmss(secs: (float, int)):
mm, ss = divmod(secs, 60)
hh, mm = divmod(mm, 60)
return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",")
srt_str = '\n'.join(
f'{i}\n'
f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n'
f'{sub["text"].strip() if strip else sub["text"]}\n'
for i, sub in enumerate(lines, 1))
if save_path:
with open(save_path, 'w', encoding='utf-8') as f:
f.write(srt_str)
print(f'Saved: {os.path.abspath(save_path)}')
return srt_str
def group_word_timestamps(res: (dict, list), one_group=True, combine_compound=False,
ts_key='whole_word_timestamps', min_dur: float = None):
if min_dur is None:
min_dur = 0.0
def group_ts(ts_: List[dict], start) -> List[dict]:
first_group: List[dict] = []
for w_ts in ts_:
if first_group:
if (not combine_compound or w_ts['word'].startswith(' ')) and \
(w_ts['timestamp'] - first_group[-1]['start']) >= min_dur and \
first_group[-1]['end'] < w_ts['timestamp']:
first_group.append(dict(start=first_group[-1]['end'],
end=w_ts['timestamp'],
text=w_ts['word']))
else:
first_group[-1]['end'] = max(first_group[-1]['end'], w_ts['timestamp'])
first_group[-1]['text'] += w_ts['word']
else:
first_group.append(dict(start=start,
end=w_ts['timestamp'],
text=w_ts['word']))
return first_group
def group_zero_duration(first_group: List[dict]) -> List[dict]:
final_group: List[dict] = []
for ts_dict in first_group:
if not final_group or (ts_dict['end'] - ts_dict['start']) > 0:
final_group.append(ts_dict)
else:
final_group[-1]['end'] = ts_dict['end']
final_group[-1]['text'] += ts_dict['text']
return final_group
segs: List[dict] = res['segments'] if isinstance(res, dict) else res
assert set(ts_key in seg for seg in segs) == {True}, f'input contains missing {ts_key}'
grouped = (group_ts(seg[ts_key], seg['start']) for seg in segs)
return group_zero_duration(list(chain.from_iterable(grouped))) if one_group else list(grouped)
def tighten_timestamps(res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict:
res = deepcopy(res)
for i in range(len(res['segments'])):
if start_at_first_word:
res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp']
if end_before_period and \
res['segments'][i]['word_timestamps'][-1] == '.' and \
len(res['segments'][i]['word_timestamps']) > 1:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp']
elif end_at_last_word:
res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp']
return res
def results_to_srt(res: dict, srt_path, word_level=True, combine_compound=False,
end_at_last_word=True, end_before_period=False, start_at_first_word=True, strip=False):
if word_level:
results_to_word_srt(res, srt_path, combine_compound=combine_compound, strip=strip)
else:
results_to_sentence_srt(res, srt_path,
end_at_last_word=end_at_last_word,
end_before_period=end_before_period,
start_at_first_word=start_at_first_word,
strip=strip)
def results_to_sentence_srt(res: dict, srt_path,
end_at_last_word=False,
end_before_period=False,
start_at_first_word=False,
strip=False):
"""
Parameters
----------
res: dict
results from modified model
srt_path: str
output path of srt
end_at_last_word: bool
set end-of-sentence to timestamp-of-last-token
end_before_period: bool
set end-of-sentence to timestamp-of-last-non-period-token
start_at_first_word: bool
set start-of-sentence to timestamp-of-first-token
strip: bool
perform strip() on each sentence
"""
strict = any((end_at_last_word, end_before_period, start_at_first_word))
segs = tighten_timestamps(res,
end_at_last_word=end_at_last_word,
end_before_period=end_before_period,
start_at_first_word=start_at_first_word)['segments'] \
if strict else res['segments']
max_idx = len(segs) - 1
i = 1
while i <= max_idx:
if not (segs[i]['end'] - segs[i]['start']):
if segs[i - 1]['end'] == segs[i]['end']:
segs[i - 1]['text'] += (' ' + segs[i]['text'].strip())
del segs[i]
max_idx -= 1
continue
else:
segs[i]['start'] = segs[i - 1]['end']
i += 1
to_srt(segs, srt_path, strip=strip)
def results_to_word_srt(res: dict, srt_path, combine_compound=False, strip=False, min_dur: float = None):
"""
Parameters
----------
res: dict
results from modified model
srt_path: str
output path of srt
combine_compound: bool
concatenate words without inbetween spacing
strip: bool
perform strip() on each word
min_dur: bool
minimum duration for each word (i.e. concat the words if it is less than specified value; Default 0.02)
"""
to_srt(group_word_timestamps(res, combine_compound=combine_compound, min_dur=min_dur),
srt_path, strip=strip)
def results_to_token_srt(res: dict, srt_path, combine_compound=False, strip=False, min_dur: float = None):
"""
Parameters
----------
res: dict
results from modified model
srt_path: str
output path of srt
combine_compound: bool
concatenate words without inbetween spacing
strip: bool
perform strip() on each token
min_dur: bool
minimum duration for each token (i.e. concat the tokens if it is less than specified value; Default 0.02)
"""
to_srt(group_word_timestamps(res, combine_compound=combine_compound, ts_key='word_timestamps', min_dur=min_dur),
srt_path, strip=strip)
def _get_min_estimation(estimations: List[Union[list, np.ndarray]],
min_: (int, float) = None,
max_: (int, float) = None) -> np.ndarray:
estimations = deepcopy(estimations)
estimations = list(map(lambda est_: np.array(est_) if isinstance(est_, list) else est_, estimations))
prev_min = min_ or 0
curr_max = max_ or np.max(estimations[-1])
min_est = []
for curr_est in estimations:
curr_min = curr_est[np.logical_and(curr_max > curr_est, curr_est > prev_min)]
curr_min = np.min(curr_min) if curr_min.shape[0] else prev_min
min_est.append(curr_min)
prev_min = curr_min
return np.array(min_est)
def _get_max_estimation(estimations: List[Union[list, np.ndarray]],
max_: (int, float) = None,
min_: (int, float) = None) -> np.ndarray:
estimations = deepcopy(estimations)
estimations = list(map(lambda est_: np.array(est_) if isinstance(est_, list) else est_, estimations))
prev_max = max_ or np.max(estimations[-1])
curr_min = np.min(estimations[0]) if min_ is None else min_
max_est = []
for curr_est in reversed(estimations):
curr_max = curr_est[np.logical_and(prev_max > curr_est, curr_est > curr_min)]
curr_max = np.max(curr_max) if curr_max.shape[0] else prev_max
max_est.append(curr_max)
prev_max = curr_max
max_est.reverse()
return np.array(max_est)
def _remove_overestimation(x: Union[np.ndarray, List[Union[int, float]]], alt_est: List[Union[list, np.ndarray]] = None,
max_: (int, float) = None, min_: (int, float) = None,
aggressive=False) -> np.ndarray:
x = np.array(x) if isinstance(x, list) else deepcopy(x)
if alt_est is not None:
alt_est = list(map(lambda est_: np.array(est_) if isinstance(est_, list) else est_, alt_est))
assert x.ndim == 1
assert alt_est is None or len(alt_est) == x.shape[0]
max_val = x[-1] if max_ is None else max_
min_val = x[0] if min_ is None else min_
def curr_max_min(val):
if min_ is None:
return val
return max(min_, val)
if min_ is not None:
x[x < min_] = min_
reduce_ = np.min if aggressive else np.mean
for i in range(x.shape[-1] - 1, -1, -1):
if x[i] > max_val or (i > 1 and x[i] < reduce_(x[:i])): # spikes or dips
if alt_est is None or alt_est[i] is None:
x[i] = max_val
else:
tmp_min = min_val if i < 2 else curr_max_min(np.mean(x[:i]))
alt_ = alt_est[i][np.logical_and(alt_est[i] < max_val, alt_est[i] > tmp_min)]
x[i] = max_val if alt_.shape[0] == 0 else alt_[0]
max_val = x[i]
return x
def _remove_underestimation(x: Union[np.ndarray, List[Union[int, float]]],
alt_est: List[Union[list, np.ndarray]] = None,
min_: (int, float) = None, max_: (int, float) = None,
aggressive=False) -> np.ndarray:
x = np.array(x) if isinstance(x, list) else deepcopy(x)
if alt_est is not None:
alt_est = list(map(lambda est_: np.array(est_) if isinstance(est_, list) else est_, alt_est))
assert x.ndim == 1
assert alt_est is None or len(alt_est) == x.shape[0]
min_val = x[0] if min_ is None else min_
max_val = x[-1] if max_ is None else max_
def curr_min_max(val):
if max_ is None:
return val
return min(max_, val)
if max_ is not None:
x[x > max_] = max_
reduce_ = np.max if aggressive else np.mean
max_i_reduce = x.shape[-1] - 2
for i in range(0, x.shape[-1]):
if x[i] < min_val or (i < max_i_reduce and x[i] > reduce_(x[i + 1:])): # dips or spikes
if alt_est is None or alt_est[i] is None:
x[i] = min_val
else:
tmp_max = max_val if i >= max_i_reduce else curr_min_max(np.mean(x[i + 1:]))
alt_ = alt_est[i][np.logical_and(alt_est[i] > min_val, alt_est[i] < tmp_max)]
x[i] = min_val if alt_.shape[0] == 0 else alt_[0]
min_val = x[i]
return x
def _merge_max_min_estimation(mx: Union[np.ndarray, List[Union[int, float]]],
mn: Union[np.ndarray, List[Union[int, float]]],
alt_est: List[Union[list, np.ndarray]] = None) -> np.ndarray:
mx = np.array(mx) if isinstance(mx, list) else deepcopy(mx)
mn = np.array(mn) if isinstance(mn, list) else deepcopy(mn)
if alt_est is not None:
alt_est = list(map(lambda est_: np.array(est_) if isinstance(est_, list) else est_, alt_est))
assert mx.ndim == 1 and mn.ndim == 1
assert mx.shape[0] == mn.shape[0]
assert alt_est is None or len(alt_est) == mx.shape[0]
pref_mx = np.var(mx) > np.var(mn)
if pref_mx:
mn[0] = mx[0]
prev_min = mn[0]
for i in range(1, mn.shape[0]):
if prev_min > mn[i]:
if mn[i] > mx[i]: # prev_min > mn[i] > mx[i]
mn[i] = prev_min
elif mx[i] > mn[i]:
if prev_min > mx[i]: # prev_min > mx[i] > mn[i]
mn[i] = prev_min
else: # mx[i] > prev_min > mn[i]
alt_ = alt_est[i][np.logical_and(alt_est[i] > prev_min, alt_est[i] < mx[i])]
mn[i] = (mx[i] if pref_mx else prev_min) if alt_.shape[0] == 0 else alt_[0]
else: # prev_min > mn[i] == mx[i]
mn[i] = prev_min
elif mn[i] > prev_min:
# if prev_min > mx[i]: # mn[i] > prev_min > mx[i]
# pass
if mx[i] > prev_min:
if mn[i] > mx[i]: # mn[i] > mx[i] > prev_min
pass
elif mx[i] > mn[i]: # mx[i] > mn[i] > prev_min
alt_ = alt_est[i][np.logical_and(alt_est[i] > mn[i], alt_est[i] < mx[i])]
if alt_.shape[0]:
mn[i] = alt_[0]
elif pref_mx:
mn[i] = mx[i]
# else: # mx[i] == mn[i] > prev_min
# pass
# else: # mn[i] > mx[i] == prev_min
# pass
else: # mn[i] == prev_min
if mx[i] > mn[i]: # mx[i] > mn[i] == prev_min
alt_ = alt_est[i][np.logical_and(alt_est[i] > mn[i], alt_est[i] < mx[i])]
if alt_.shape[0]:
mn[i] = alt_[0]
elif pref_mx:
mn[i] = mx[i]
# elif mn[i] > mx[i]: # mn[i] == prev_min > mx[i]
# pass
# else: # mn[i] == prev_min == mx[i]
# pass
prev_min = mn[i]
return mn
def _avg_merge_min_max(mx: Union[np.ndarray, List[Union[int, float]]],
mn: Union[np.ndarray, List[Union[int, float]]],
alt_timestamps: List[Union[List[Union[int, float]], np.ndarray]] = None,
max_: (int, float) = None, min_: (int, float) = None):
mx = np.array(mx) if isinstance(mx, list) else deepcopy(mx)
mn = np.array(mn) if isinstance(mn, list) else deepcopy(mn)
assert mx.ndim == mn.ndim == 1
assert mx.shape[0] == mn.shape[0]
avg_ = (mx + mn) / 2
if check_ascending_sequence(avg_, verbose=False):
return avg_
if not max_:
max_ = max(mx[-1], mn[-1])
if min_ is None:
min_ = min(mn[0], mx[0])
return _stabilize_timestamps(avg_, alt_timestamps, max_=max_, min_=min_)
def _stabilize_timestamps(timestamps: Union[np.ndarray, List[Union[int, float]]],
alt_timestamps: List[Union[List[Union[int, float]], np.ndarray]] = None,
max_: (int, float) = None, min_: (int, float) = None, aggressive=False) -> np.ndarray:
mx = _remove_overestimation(timestamps, alt_est=alt_timestamps, max_=max_, min_=min_, aggressive=aggressive)
mn = _remove_underestimation(timestamps, alt_est=alt_timestamps, max_=max_, min_=min_, aggressive=aggressive)
return _merge_max_min_estimation(mx, mn, alt_timestamps)
def _stabilize_more_timestamps(timestamps: List[Union[list, np.ndarray]],
max_: (int, float) = None, min_: (int, float) = None, average=True) -> np.ndarray:
mx = _get_max_estimation(timestamps, max_=max_, min_=min_)
mn = _get_min_estimation(timestamps, max_=max_, min_=min_)
if average:
return _avg_merge_min_max(mx, mn, timestamps, max_=max_, min_=min_)
return _merge_max_min_estimation(mx, mn, timestamps)
def stabilize_timestamps(segments: Union[List[dict], dict],
top_focus=False, aggressive=False, average=True) -> List[dict]:
"""
Parameters
----------
segments: Union[List[dict], dict]
result['segments'] or result
top_focus: bool
adhere closely to the top predictions for word timestamps
aggressive: bool
only if top_focus=True,
allow greater variation in word_timestamps/whole_word_timestamps
average: bool
only if top_focus=False,
average min and max of unstable_word_timestamps to get word_timestamps/whole_word_timestamps
"""
if isinstance(segments, dict):
segments = segments['segments']
if not segments:
warnings.warn('No Segments Found')
return []
missing_ts_idx = set(map(lambda x: None if x[1].get('unstable_word_timestamps') else x[0], enumerate(segments))) - {
None}
no_word_timestamps = len(missing_ts_idx) == len(segments)
if not no_word_timestamps and missing_ts_idx:
warnings.warn(f'Segments {list(missing_ts_idx)} are missing unstable_word_timestamps. '
f'Word-level timestamp stabilization will skipped')
segments = deepcopy(segments)
sectioned_segments: List[List] = [[]]
for i, seg in enumerate(segments, 1):
sectioned_segments[-1].append(seg)
if seg['anchor_point']:
if i < len(segments):
sectioned_segments.append([])
assert all(set(len(set(s['offset'] for s in segs)) == 1 for segs in sectioned_segments))
sectioned_segments_timestamps = [dict(min_=segs[-1]['offset'],
max_=segs[-1]['next_offset'],
timestamps=list(chain.from_iterable((s['start'], s['end']) for s in segs)),
alt_timestamps=list(chain.from_iterable((s['alt_start_timestamps'],
s['alt_end_timestamps'])
for s in segs)))
for segs in sectioned_segments]
sectioned_stab_timestamps = [_stabilize_timestamps(**kwargs).reshape(-1, 2) for kwargs in
sectioned_segments_timestamps]
for i in range(len(sectioned_segments)):
for j in range(len(sectioned_segments[i])):
sectioned_segments[i][j]['start'], sectioned_segments[i][j]['end'] = sectioned_stab_timestamps[i][j]
if not missing_ts_idx:
if top_focus:
top_word_ts = [ts_['timestamps'][0] for ts_ in
sectioned_segments[i][j]['unstable_word_timestamps']]
alt_word_ts = [ts_['timestamps'][1:] for ts_ in
sectioned_segments[i][j]['unstable_word_timestamps']]
temp_stab_word_ts = _stabilize_timestamps(top_word_ts, alt_word_ts,
max_=sectioned_segments[i][j]['end'],
min_=sectioned_segments[i][j]['start'],
aggressive=aggressive)
else:
word_ts = [ts_['timestamps'] for ts_ in sectioned_segments[i][j]['unstable_word_timestamps']]
temp_stab_word_ts = _stabilize_more_timestamps(word_ts,
max_=sectioned_segments[i][j]['end'],
min_=sectioned_segments[i][j]['start'],
average=average)
temp_stab_word_ts = [{'word': sectioned_segments[i][j]['unstable_word_timestamps'][k]['word'],
'token': sectioned_segments[i][j]['unstable_word_timestamps'][k]['token'],
'timestamp': temp_stab_word_ts[k]}
for k in range(temp_stab_word_ts.shape[0])]
sectioned_segments[i][j]['word_timestamps'] = temp_stab_word_ts
return list(chain.from_iterable(sectioned_segments))
def save_as_json(results, path):
with open(path, 'w', encoding='utf-8') as f:
json.dump(results, f)
def add_whole_word_ts(tokenizer: Tokenizer, segments: Union[List[dict], dict], merge_non_space: bool = None,
prepend_punctuations: Union[List[str], Tuple[str]] = None,
append_punctuations: Union[List[str], Tuple[str]] = None):
merge_non_space = (tokenizer.language in ['en'] or tokenizer.language is None) \
if merge_non_space is None else merge_non_space
if prepend_punctuations is None:
prepend_punctuations = r'“¿([{'
if append_punctuations is None:
append_punctuations = r'.。,,!!??::”)]}、'
if isinstance(segments, dict):
segments = segments['segments']
if not segments:
print('No segments found, whole-word timestamps cannot be added.')
return
missing_idx = set(-1 if seg.get('word_timestamps') else i for i, seg in enumerate(segments)) - {-1}
if missing_idx:
if len(missing_idx) == len(segments):
print('No word_timestamps found, whole-word timestamps cannot be added.')
return
print(f'Some word_timestamps not found, '
f'whole-word timestamps cannot be added to the following segments: {tuple(missing_idx)}')
failed_idx = []
for seg_idx, seg in enumerate(segments):
if seg.get('word_timestamps'):
prev_idx = 0
remaining_text = seg['text']
has_prepend = False
whole_word_timestamps: List[dict] = []
for wts_idx in range(1, len(seg['word_timestamps']) + 1):
max_ts = seg['word_timestamps'][wts_idx - 1]['timestamp']
tokens = [wts['token'] for wts in seg['word_timestamps'][prev_idx: wts_idx]]
temp_whole_word = tokenizer.decode(tokens)
if temp_whole_word == remaining_text[:len(temp_whole_word)]:
prev_idx = wts_idx
remaining_text = remaining_text[len(temp_whole_word):]
if (not merge_non_space or temp_whole_word.startswith(' ') or not whole_word_timestamps) and \
temp_whole_word not in append_punctuations and \
not has_prepend:
has_prepend = temp_whole_word.strip() in prepend_punctuations
whole_word_timestamps.append(dict(word=temp_whole_word, timestamp=max_ts))
else:
has_prepend = False
if whole_word_timestamps == []:
continue
whole_word_timestamps[-1]['word'] += temp_whole_word
whole_word_timestamps[-1]['timestamp'] = max_ts
if remaining_text:
failed_idx.append(seg_idx)
whole_word_timestamps = []
seg['whole_word_timestamps'] = whole_word_timestamps or None
else:
seg['whole_word_timestamps'] = None
if failed_idx:
print(f'Failed to add whole-word timestamps to the following segments: {tuple(failed_idx)}')
def _load_audio_waveform(audio: Union[str, bytes, np.ndarray, torch.Tensor], h: int, w: int) -> np.ndarray:
"""
Parameters
----------
audio: Union[str, bytes, np.ndarray, torch.Tensor], shape = (*)
The path to audio or bytes of audio file or a NumPy array or Tensor containing the audio waveform in 16 kHz
h: int
Height of waveform image
w: int
Width of waveform image
Returns
-------
Audio waveform image as a NumPy array, in uint8 dtype.
"""
try:
if isinstance(audio, str):
stream = ffmpeg.input(audio, threads=0)
inp = None
else:
if isinstance(audio, bytes):
stream = ffmpeg.input('pipe:', threads=0)
inp = audio
else:
warnings.warn('A resampled input causes an unexplained temporal shift in waveform image '
'that will skew the timestamp suppression and may result in inaccurate timestamps.\n'
'Use audio_for_mask for transcribe() to provide the original audio track '
'as the path or bytes of the audio file.',
stacklevel=2)
stream = ffmpeg.input('pipe:', threads=0, ac=1, format='s16le')
if isinstance(audio, torch.Tensor):
audio = np.array(audio)
inp = (audio * 32768.0).astype(np.int16).tobytes()
waveform, err = (
stream.filter('aformat', channel_layouts='mono')
.filter('highpass', f='200').filter('lowpass', f='3000')
.filter('showwavespic', s=f'{w}x{h}')
.output('-', pix_fmt='gray', format='rawvideo')
.run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True, input=inp)
)
except ffmpeg.Error as e:
raise RuntimeError(f"Failed to load audio in waveform: {e.stderr.decode()}") from e
else:
if not waveform:
partial_file = b'partial file' in err and b'Output file is empty' in err
add_msg = '\nMetadata for decoding are likely at end of file, try to use path of audio instead.' \
if partial_file and isinstance(audio, bytes) else ''
raise RuntimeError(f"Failed to load audio in waveform: {err.decode()}" + add_msg)
return np.frombuffer(waveform, dtype=np.uint8).reshape(h, w)
def _remove_lower_quantile(waveform: np.ndarray,
upper_quantile: float = None,
lower_quantile: float = None,
lower_threshold: float = None) -> np.ndarray:
"""
Removes lower quantile of amplitude from waveform image
"""
if upper_quantile is None:
upper_quantile = 0.85
if lower_quantile is None:
lower_quantile = 0.15
if lower_threshold is None:
lower_threshold = 0.15
waveform = deepcopy(waveform)
wave_sums = waveform.sum(0)
mx = np.quantile(wave_sums, upper_quantile, -1)
mn = np.quantile(wave_sums, lower_quantile, -1)
mn_threshold = (mx - mn) * lower_threshold + mn
waveform[:, wave_sums < mn_threshold] = 0
return waveform
def _wave_to_ts_filter(waveform: np.ndarray, suppress_middle=True,
max_index: (list, int) = None) -> np.ndarray:
"""
Returns A NumPy array mask of sections with amplitude zero
"""
assert waveform.ndim <= 2, f'waveform have at most 2 dims but found {waveform.ndim}'
if waveform.ndim == 1:
wave_sum = waveform
else:
wave_sum = waveform.sum(-2)
wave_filter = wave_sum.astype(bool)
if not suppress_middle:
nonzero_indices = wave_filter.nonzero()[0]
wave_filter[nonzero_indices[0]:nonzero_indices[-1] + 1] = True
if max_index is not None:
wave_filter[max_index + 1:] = False
return ~wave_filter
# modified version of whisper.transcribe.transcribe
def transcribe_word_level(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
*,
verbose: bool = False,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
compression_ratio_threshold: Optional[float] = 2.4,
logprob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
stab=True, top_focus=False, ts_num: int = 10,
alpha: float = None, print_unstab=False,
suppress_silence: bool = True,
suppress_middle: bool = True,
suppress_word_ts: bool = True,
remove_background: bool = True,
silence_threshold: float = 0.1,
prepend_punctuations: Union[List[str], Tuple[str]] = None,
append_punctuations: Union[List[str], Tuple[str]] = None,
audio_for_mask: (str, bytes) = None,
**decode_options):
"""
Transcribe an audio file using Whisper
Parameters
----------
model: Whisper
The Whisper model instance
audio: Union[str, np.ndarray, torch.Tensor]
The path to the audio file to open, or the audio waveform
verbose: bool
Whether to display the decoded text (with finalized timestamps) to the console
temperature: Union[float, Tuple[float, ...]]
Temperature for sampling. It can be a tuple of temperatures, which will be successfully used
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
compression_ratio_threshold: float
If the gzip compression ratio is above this value, treat as failed
logprob_threshold: float
If the average log probability over sampled tokens is below this value, treat as failed
no_speech_threshold: float
If the no_speech probability is higher than this value AND the average log probability
over sampled tokens is below `logprob_threshold`, consider the segment as silent
condition_on_previous_text: bool
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
stab: bool
Stabilizing timestamps by cross compare timestamps and using additional top timestamp predictions
to fill in when appropriate to ensure timestamps are chronological.
top_focus: bool
Adhere closely to the top predictions for token timestamps stabilization
ts_num: int
Number of top timestamp predictions to save for each word for postprocessing stabilization (default: 10).
alpha: float
Amount of noise to add to audio to produce slightly difference results.
audio_features *= torch.rand_like(audio_features) * alpha + 1
print_unstab: bool
Whether to display the text (without stabilize timestamps) being decoded to the console
(i.e. behaves like verbose before model was modified)
suppress_silence: bool
Suppress timestamp tokens that are marked as silent
suppress_middle: bool
Suppress any silent timestamps tokens of middle of the segment instead of only beginning and ending
suppress_word_ts: bool
Suppress timestamp tokens of words that are marked as silent
remove_background: bool
Whether to remove background noise from waveform so that it is marked silent.
Determined by parameters part of decode_options (i.e. specify like other options here):
upper_quantile: float
The upper quantile of amplitude to determine a max amplitude, mx (Default: 0.85)
lower_quantile: float
The lower quantile of amplitude to determine a min amplitude, mn (Default: 0.15)
lower_threshold: float
Suppressed sections of waveform where amplitude < lower_threshold*(mx-mn) + mn. (Default: 0.15)
silence_threshold: float:
Audio segments silence average >= silence_threshold
then that segment will not have background removed even if remove_background=True.
e.g. 0.5 means if less than half of the audio segment is silent then background will be removed accordingly
prepend_punctuations: Union[List[str], Tuple[str]]
Punctuations to prepend to next word (Default: “¿([{)
append_punctuations: Union[List[str], Tuple[str]]
Punctuations to append to previous word (Default: .。,,!!??::”)]}、)
audio_for_mask: (str, bytes)
Original audio track as path or bytes of audio file.
Since resampled audio may shift the waveform image,
this is an alternative to 'audio' option to generate suppression mask from the original audio.
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
"""
if 'no_captions_threshold' in decode_options:
warnings.warn('no_captions_threshold is deprecated. '
'Please use no_speech_threshold instead.', DeprecationWarning, stacklevel=2)
no_speech_threshold = decode_options.pop('no_captions_threshold')
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
if model.device == torch.device("cpu"):
if torch.cuda.is_available():
warnings.warn("Performing inference on CPU when CUDA is available")
if dtype == torch.float16:
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
dtype = torch.float32
if dtype == torch.float32:
decode_options["fp16"] = False
if 'max_initial_timestamp' not in decode_options:
decode_options['max_initial_timestamp'] = None
mel = log_mel_spectrogram(audio)
if decode_options.get("language", None) is None:
if verbose:
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
_, probs = model.detect_language(segment)
decode_options["language"] = max(probs, key=probs.get)
print(f"Detected language: {LANGUAGES[decode_options['language']]}")
mel = mel.unsqueeze(0)
language = decode_options["language"]
task = decode_options.get("task", "transcribe")
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
def decode_with_fallback(segment: torch.Tensor, suppress_ts_mask: Tensor = None) \
-> Union[List[DecodingResult], tuple]:
temperatures = [temperature] if isinstance(temperature, (int, float)) else temperature
kwargs = {**decode_options}
t = temperatures[0]
if t == 0:
best_of = kwargs.pop("best_of", None)
else:
best_of = kwargs.get("best_of", None)
options = DecodingOptions(**kwargs, temperature=t)
results, ts_tokens, ts_logits_ = model.decode(segment, options, ts_num=ts_num, alpha=alpha,
suppress_ts_mask=suppress_ts_mask,
suppress_word_ts=suppress_word_ts)
kwargs.pop("beam_size", None) # no beam search for t > 0
kwargs.pop("patience", None) # no patience for t > 0
kwargs["best_of"] = best_of # enable best_of for t > 0
for t in temperatures[1:]:
needs_fallback = [
compression_ratio_threshold is not None
and result.compression_ratio > compression_ratio_threshold
or logprob_threshold is not None
and result.avg_logprob < logprob_threshold
for result in results
]
if any(needs_fallback):
options = DecodingOptions(**kwargs, temperature=t)
retries, r_ts_tokens, r_ts_logits = model.decode(segment[needs_fallback], options,
ts_num=ts_num, alpha=alpha,
suppress_ts_mask=suppress_ts_mask,
suppress_word_ts=suppress_word_ts)
for retry_index, original_index in enumerate(np.nonzero(needs_fallback)[0]):
results[original_index] = retries[retry_index]
ts_tokens[original_index] = r_ts_tokens[retry_index]
ts_logits_[original_index] = r_ts_logits[retry_index]
return results, ts_tokens, ts_logits_
seek = 0
input_stride = exact_div(
N_FRAMES, model.dims.n_audio_ctx
) # mel frames per output token: 2
time_precision = (
input_stride * HOP_LENGTH / SAMPLE_RATE
) # time per output token: 0.02 (seconds)
all_tokens = []
all_segments = []
prompt_reset_since = 0
initial_prompt = decode_options.pop("initial_prompt", None) or []
if initial_prompt:
initial_prompt = tokenizer.encode(" " + initial_prompt.strip())
all_tokens.extend(initial_prompt)
def _to_list(x: (Tensor, None)):
if x is None:
return x
return x.tolist()
def add_segment(
*, offset: float, start: float, end: float, text_tokens: Tensor, result: DecodingResult,
start_timestamps: list = None, end_timestamps: list = None, word_timestamps: Tensor = None,
start_ts_logits: list = None, end_ts_logits: list = None, word_ts_logits: Tensor = None
):
no_eot_mask = text_tokens < tokenizer.eot
text_tokens_no_eot = text_tokens[no_eot_mask]
text = tokenizer.decode(text_tokens_no_eot)
if len(text.strip()) == 0: # skip empty text output
return
if word_timestamps is not None:
assert word_timestamps.shape[0] == text_tokens.shape[0]
if word_ts_logits is None:
word_ts_fields = zip(text_tokens_no_eot, word_timestamps[no_eot_mask], repeat(None))
else:
assert word_ts_logits.shape[0] == text_tokens.shape[0]
word_ts_fields = zip(text_tokens_no_eot, word_timestamps[no_eot_mask], word_ts_logits[no_eot_mask])
word_timestamps = [dict(word=tokenizer.decode([token]),
token=token.item(),
timestamps=timestamps_.tolist(),
timestamp_logits=_to_list(ts_logits_))
for token, timestamps_, ts_logits_ in word_ts_fields]
all_segments.append(
{
"id": len(all_segments),
"seek": seek,
'offset': offset, # offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
"start": start,
"end": end,
"text": text,
"tokens": result.tokens,
"temperature": result.temperature,
"avg_logprob": result.avg_logprob,
"compression_ratio": result.compression_ratio,
"no_speech_prob": get_new_attrs(result, 'no_caption_prob'),
"alt_start_timestamps": start_timestamps,
"start_ts_logits": start_ts_logits,
"alt_end_timestamps": end_timestamps,
"end_ts_logits": end_ts_logits,
"unstable_word_timestamps": word_timestamps,
'anchor_point': False
}
)
if print_unstab or (verbose and not stab):
print(f'[{format_timestamp(start)} --> {format_timestamp(end)}] "{text}"')
if word_timestamps is not None:
ts_str = (f' ->[{format_timestamp(ts_["timestamps"][0])}] "{ts_["word"].strip()}"' for ts_ in
word_timestamps)
print('\n'.join(ts_str), end='\n\n')
if suppress_silence:
ts_scale = HOP_LENGTH / SAMPLE_RATE / time_precision
wf = _load_audio_waveform(audio_for_mask or audio, 100, int(mel.shape[-1] * ts_scale))
upper_quantile = decode_options.pop('upper_quantile', 0.85)
lower_quantile = decode_options.pop('lower_quantile', 0.15)
lower_threshold = decode_options.pop('lower_threshold', 0.15)
while seek < mel.shape[-1]:
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
remaining_duration = float((mel.shape[-1] - seek) * HOP_LENGTH / SAMPLE_RATE)
segment = pad_or_trim(mel[:, :, seek:], N_FRAMES).to(model.device).to(dtype)
segment_duration = min(float(segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE), remaining_duration)
segment_max_ts = segment_duration / time_precision
if suppress_silence:
wf_seek = int(seek * ts_scale)
segment_wf = wf[..., wf_seek:wf_seek + 1501]
if remove_background and \
(1 - segment_wf.sum(0).clip(max=1).mean()) < silence_threshold:
segment_wf = _remove_lower_quantile(segment_wf.astype(np.float32),
upper_quantile=upper_quantile,
lower_quantile=lower_quantile,
lower_threshold=lower_threshold)
segment_wf = pad_or_trim(segment_wf, 1501)
suppress_ts_mask = torch.from_numpy(_wave_to_ts_filter(segment_wf,
suppress_middle=suppress_middle,
max_index=int(segment_max_ts)))
if suppress_ts_mask.all(): # segment is silent
seek += segment.shape[-1] # fast-forward to the next segment boundary
continue
else:
suppress_ts_mask = None
decode_options["prompt"] = all_tokens[prompt_reset_since:]
result, finalized_ts_tokens, ts_logits = decode_with_fallback(segment,
suppress_ts_mask=suppress_ts_mask)
result = result[0]
tokens = torch.tensor(result.tokens)
finalized_ts_tokens = torch.tensor(finalized_ts_tokens[0])
ts_logits = torch.tensor(ts_logits[0])
if no_speech_threshold is not None:
# no voice activity check
should_skip = get_new_attrs(result, 'no_caption_prob') > no_speech_threshold
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
# don't skip if the logprob is high enough, despite the no_speech_prob
should_skip = False
if should_skip:
seek += segment.shape[-1] # fast-forward to the next segment boundary
continue
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
last_slice = 0
for current_slice in consecutive:
sliced_tokens = tokens[last_slice:current_slice]
sliced_ts_tokens = finalized_ts_tokens[last_slice:current_slice]
sliced_ts_logits = ts_logits[last_slice:current_slice]
start_timestamp_position = (
sliced_tokens[0].item() - tokenizer.timestamp_begin
)
end_timestamp_position = (
sliced_tokens[-1].item() - tokenizer.timestamp_begin
)
word_ts = timestamp_offset + sliced_ts_tokens * time_precision
add_segment(
offset=timestamp_offset,
start=timestamp_offset + start_timestamp_position * time_precision,
end=min(timestamp_offset + end_timestamp_position * time_precision,
timestamp_offset + segment_duration),
text_tokens=sliced_tokens[1:-1],
result=result,
start_timestamps=word_ts[0].tolist(),
end_timestamps=word_ts[-1].tolist(),
word_timestamps=word_ts[1:-1],
start_ts_logits=sliced_ts_logits[0].tolist(),
end_ts_logits=sliced_ts_logits[-1].tolist(),
word_ts_logits=sliced_ts_logits[1:-1]
)
last_slice = current_slice
last_timestamp_position = (
min(tokens[last_slice - 1].item() - tokenizer.timestamp_begin, segment_max_ts)
)
seek += last_timestamp_position * input_stride
all_tokens.extend(tokens[: last_slice + 1].tolist())
else:
duration = segment_duration
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
if len(timestamps) > 0:
# no consecutive timestamps but it has a timestamp; use the last one.
# single timestamp at the end means no speech after the last timestamp.
last_timestamp_position = min(timestamps[-1].item() - tokenizer.timestamp_begin, segment_max_ts)
duration = last_timestamp_position * time_precision
word_ts = timestamp_offset + finalized_ts_tokens * time_precision
add_segment(
offset=timestamp_offset,
start=timestamp_offset,
end=timestamp_offset + duration,
text_tokens=tokens,
result=result,
word_timestamps=word_ts,
word_ts_logits=ts_logits
)
seek += segment.shape[-1]
all_tokens.extend(tokens.tolist())
if all_segments:
all_segments[-1]['anchor_point'] = True
all_segments[-1]['next_offset'] = float(seek * HOP_LENGTH / SAMPLE_RATE)
if not condition_on_previous_text or result.temperature > 0.5:
# do not feed the prompt tokens if a high temperature was used
prompt_reset_since = len(all_tokens)
if len(all_segments) > 1 and all_segments[-1]['alt_start_timestamps'] is None:
all_segments[-1]['alt_start_timestamps'] = all_segments[-2]['alt_end_timestamps']
if stab:
all_segments = stabilize_timestamps(all_segments, top_focus=top_focus)
add_whole_word_ts(tokenizer, all_segments,
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations)
if verbose:
print('\nSTABILIZED\n')
for seg_ in all_segments:
print(f'[{format_timestamp(seg_["start"])} --> {format_timestamp(seg_["end"])}] "{seg_["text"]}"')
if seg_['word_timestamps']:
ts_str = (f' ->[{format_timestamp(ts_["timestamp"])}] "{ts_["word"].strip()}"' for ts_ in
seg_['word_timestamps'])
print('\n'.join(ts_str), end='\n\n')
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language)
def _suppress_ts(ts_logits: Tensor, suppress_ts_mask: Tensor = None):
if suppress_ts_mask is not None:
ts_logits[:, suppress_ts_mask] = -np.inf
def _ts_topk(ts_logits: Tensor, k: int, prev_ts: Tensor = None) -> Tensor:
temp_ts = torch.stack(torch.topk(ts_logits, k, dim=-1), 0).unsqueeze(-2)
return temp_ts if prev_ts is None else torch.cat([prev_ts, temp_ts], dim=-2)
# modified version of whisper.GreedyDecoder
class GreedyDecoderWordLevel(GreedyDecoder):
def __init__(self, *args, **kwargs):
self.ts_num: int = kwargs.pop('ts_num', 10)
self.suppress_ts_mask: Tensor = kwargs.pop('suppress_ts_mask', None)
self.timestamp_begin = kwargs.pop('timestamp_begin', 50364)
super(GreedyDecoderWordLevel, self).__init__(*args, **kwargs)
self.ts = None
def _suppress_ts(self, logits: Tensor):
_suppress_ts(logits[:, self.timestamp_begin:],
suppress_ts_mask=self.suppress_ts_mask)
def update_with_ts(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, ts: Tensor) -> Tuple[Tensor, bool]:
self.ts = ts
self._suppress_ts(logits)
if self.temperature == 0:
next_tokens = logits.argmax(dim=-1)
else:
next_tokens = Categorical(logits=logits / self.temperature).sample()
logprobs = F.log_softmax(logits.float(), dim=-1)
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
next_tokens[tokens[:, -1] == self.eot] = self.eot
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
completed = (tokens[:, -1] == self.eot).all()
return tokens, completed
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
# make sure each sequence has at least one EOT token at the end
tokens = F.pad(tokens, (0, 1), value=self.eot)
return tokens, sum_logprobs.tolist(), self.ts.transpose(1, 0)[None]
# modified version of whisper.BeamSearchDecoder
class BeamSearchDecoderWordLevel(BeamSearchDecoder):
def __init__(self, *args, **kwargs):
self.ts_num: int = kwargs.pop('ts_num', 10)
self.suppress_ts_mask: Tensor = kwargs.pop('suppress_ts_mask', None)
self.timestamp_begin = kwargs.pop('timestamp_begin', 50364)
super(BeamSearchDecoderWordLevel, self).__init__(*args, **kwargs)
self.ts = None
self.finished_ts_ls = None
def reset(self):
self.finished_sequences = None
self.finished_ts_ls = None
def _suppress_ts(self, logits: Tensor):
_suppress_ts(logits[:, self.timestamp_begin:],
suppress_ts_mask=self.suppress_ts_mask)
def update_with_ts(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, ts: Tensor) -> Tuple[Tensor, bool]:
if tokens.shape[0] % self.beam_size != 0:
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
self.ts = ts
n_audio = tokens.shape[0] // self.beam_size
if self.finished_sequences is None: # for the first update
self.finished_sequences = [{} for _ in range(n_audio)]
self.finished_ts_ls = [{} for _ in range(n_audio)]
logprobs = F.log_softmax(logits.float(), dim=-1)
next_tokens, source_indices, finished_sequences, finished_ts_ls = [], [], [], []
self._suppress_ts(logprobs)
for i in range(n_audio):
scores, sources, finished, finished_ts = {}, {}, {}, {}
# STEP 1: calculate the cumulative log probabilities for possible candidates
for j in range(self.beam_size):
idx = i * self.beam_size + j
prefix = tokens[idx].tolist()
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
new_logprob = (sum_logprobs[idx] + logprob).item()
sequence = tuple(prefix + [token.item()])
scores[sequence] = new_logprob
sources[sequence] = idx
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
saved = 0
for sequence in sorted(scores, key=scores.get, reverse=True):
if sequence[-1] == self.eot:
finished[sequence] = scores[sequence]
finished_ts[sequence] = self.ts[:, sources[sequence]]
else:
sum_logprobs[len(next_tokens)] = scores[sequence]
next_tokens.append(sequence)
source_indices.append(sources[sequence])
saved += 1
if saved == self.beam_size:
break
finished_sequences.append(finished)
finished_ts_ls.append(finished_ts)
tokens = torch.tensor(next_tokens, device=tokens.device)
self.inference.rearrange_kv_cache(source_indices)
self.ts = self.ts[:, source_indices]
# add newly finished sequences to self.finished_sequences
assert len(self.finished_sequences) == len(finished_sequences)
for previously_finished, newly_finished, \
prev_ts_ls, new_ts_ls in \
zip(self.finished_sequences, finished_sequences,
self.finished_ts_ls, finished_ts_ls):
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
if len(previously_finished) >= self.max_candidates:
break # the candidate list is full
previously_finished[seq] = newly_finished[seq]
prev_ts_ls[seq] = new_ts_ls[seq]
# mark as completed if all audio has enough number of samples
completed = all(
len(sequences) >= self.max_candidates for sequences in self.finished_sequences
)
return tokens, completed
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
# collect all finished sequences, including patience, and add unfinished ones if not enough
self.ts = self.ts.reshape(self.ts.shape[0], *preceding_tokens.shape[:2], *self.ts.shape[2:])
sum_logprobs = sum_logprobs.cpu()
for i, (sequences, ts_) in \
enumerate(zip(self.finished_sequences, self.finished_ts_ls)):
if len(sequences) < self.beam_size: # when not enough sequences are finished
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
sequence = preceding_tokens[i, j].tolist() + [self.eot]
seq_tuple = tuple(sequence)
sequences[seq_tuple] = sum_logprobs[i][j].item()
ts_[seq_tuple] = self.ts[:, i, j]
if len(sequences) >= self.beam_size:
break
tokens: List[List[Tensor]] = [
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences
]
sum_logprobs: List[List[float]] = [
list(sequences.values()) for sequences in self.finished_sequences
]
final_ts: List[List[Tensor]] = [
list(sequences.values()) for sequences in self.finished_ts_ls
]
return tokens, sum_logprobs, final_ts
class DecodingTaskWordLevel(DecodingTask):
def __init__(self, *args, **kwargs):
self.ts_num: int = kwargs.pop('ts_num', 10)
self.alpha: float = kwargs.pop('alpha', None) # experimental
self.suppress_ts_mask: Tensor = kwargs.pop('suppress_ts_mask', None)
self.suppress_word_ts: bool = kwargs.pop('suppress_word_ts', True)
super(DecodingTaskWordLevel, self).__init__(*args, **kwargs)
if hasattr(self.decoder, 'beam_size'):
self.decoder = BeamSearchDecoderWordLevel(self.decoder.beam_size,
self.decoder.eot,
self.inference,
self.decoder.patience,
ts_num=self.ts_num,
suppress_ts_mask=self.suppress_ts_mask,
timestamp_begin=self.tokenizer.timestamp_begin)
else:
self.decoder = GreedyDecoderWordLevel(self.decoder.temperature,
self.decoder.eot,
ts_num=self.ts_num,
suppress_ts_mask=self.suppress_ts_mask,
timestamp_begin=self.tokenizer.timestamp_begin)
# modified version of whisper.DecodingTask._main_loop
def _main_loop(self, audio_features: Tensor, tokens: Tensor):
assert audio_features.shape[0] == tokens.shape[0]
n_batch = tokens.shape[0]
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
no_speech_probs = [np.nan] * n_batch
# ts = None
try:
for i in range(self.sample_len):
if self.alpha:
logits = self.inference.logits(tokens,
audio_features * (torch.rand_like(audio_features) * self.alpha + 1))
else:
logits = self.inference.logits(tokens, audio_features)
if i == 0 and get_new_attrs(self.tokenizer, 'no_captions') is not None: # save no_speech_probs
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
no_speech_probs = probs_at_sot[:, get_new_attrs(self.tokenizer, 'no_captions')].tolist()
# now we need to consider the logits at the last token only
logits = logits[:, -1]
ts_logits = torch.clone(logits[:, self.tokenizer.timestamp_begin:])
if self.suppress_word_ts:
_suppress_ts(ts_logits, self.suppress_ts_mask)
ts = _ts_topk(ts_logits, k=self.ts_num, prev_ts=self.decoder.ts)
# apply the logit filters, e.g. for suppressing or applying penalty to
for logit_filter in self.logit_filters:
logit_filter.apply(logits, tokens)
# expand the tokens tensor with the selected next tokens
tokens, completed = self.decoder.update_with_ts(tokens, logits, sum_logprobs, ts)
if completed or tokens.shape[-1] > self.n_ctx:
break
finally:
self.inference.cleanup_caching()
return tokens, sum_logprobs, no_speech_probs
# modified version of whisper.DecodingTask.run
@torch.no_grad()
def run(self, mel: Tensor) \
-> Union[List[DecodingResult], Tuple[List[DecodingResult], List[List[int]]]]:
self.decoder.reset()
tokenizer: Tokenizer = self.tokenizer
n_audio: int = mel.shape[0]
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass
tokens: Tensor = torch.tensor([self.initial_tokens]).expand(n_audio, -1)
# detect language if requested, overwriting the language token
languages, language_probs = self._detect_language(audio_features, tokens)
if self.options.task == "lang_id":
return [
DecodingResult(audio_features=features, language=language, language_probs=probs)
for features, language, probs in zip(audio_features, languages, language_probs)
]
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
# call the main sampling loop
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
audio_features = audio_features[:: self.n_group]
no_speech_probs = no_speech_probs[:: self.n_group]
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
tokens = tokens.reshape(n_audio, self.n_group, -1)
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
# get the final candidates for each group, and slice between the first sampled token and EOT
tokens, sum_logprobs, ts = self.decoder.finalize(tokens, sum_logprobs)
tokens: List[List[Tensor]] = [
[t[self.sample_begin: (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
]
ts: List[List[Tensor]] = [[t[:, :tokens[i][j].shape[-1]] for j, t in enumerate(s)] for i, s in enumerate(ts)]
# select the top-ranked sample in each group
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)]
ts: List[List[int]] = [t[i].tolist() for i, t in zip(selected, ts)]
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens]
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
avg_logprobs: List[float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)]
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs)
if len(set(map(len, fields))) != 1:
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
return [
DecodingResult(
audio_features=features,
language=language,
tokens=tokens,
text=text,
avg_logprob=avg_logprob,
**(dict(no_caption_prob=no_speech_prob) if hasattr(DecodingResult, 'no_caption_prob') else dict(
no_speech_prob=no_speech_prob)),
temperature=self.options.temperature,
compression_ratio=compression_ratio(text),
)
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields)
], ts
# modified version of whisper.decoding.decode
@torch.no_grad()
def decode_word_level(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions(),
ts_num: int = None, alpha: float = None, suppress_ts_mask: Tensor = None,
suppress_word_ts=False) -> \
Union[DecodingResult, List[DecodingResult], tuple]:
"""
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
Parameters
----------
model: Whisper
the Whisper model instance
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
A tensor containing the Mel spectrogram(s)
options: DecodingOptions
A dataclass that contains all necessary options for decoding 30-second segments
ts_num: int
Number of additional top timestamp predictions to save for each word for postprocessing stabilization (default: 5).
alpha: float
Amount of noise to add to audio to produce slightly difference results.
audio_features *= torch.rand_like(audio_features) * alpha + 1
suppress_ts_mask: (list, Tensor)
Mask suppress to timestamp token(s) for decoding
suppress_word_ts: bool
Use suppress_ts_mask to suppress timestamp tokens of words
Returns
-------
result: Union[DecodingResult, List[DecodingResult]]
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
"""
single = mel.ndim == 2
if single:
mel = mel.unsqueeze(0)
result, ts = DecodingTaskWordLevel(model, options,
ts_num=ts_num,
alpha=alpha,
suppress_ts_mask=suppress_ts_mask,
suppress_word_ts=suppress_word_ts).run(mel)
if single:
result = result[0]
ts_tokens = ts[0][1]
ts_logits = ts[0][0]
else:
ts_tokens = [ts_[1] for ts_ in ts]
ts_logits = [ts_[0] for ts_ in ts]
return result, ts_tokens, ts_logits
def modify_model(model: whisper.model.Whisper):
model.decode = MethodType(decode_word_level, model)
model.transcribe = MethodType(transcribe_word_level, model)