from stable_whisper import modify_model,results_to_word_srt, results_to_sentence_srt import whisper import pysrt import re from pytube import YouTube import os from copy import deepcopy from typing import List import os from langchain import HuggingFaceHub, PromptTemplate, LLMChain from langchain_community.document_loaders import UnstructuredPDFLoader from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk import FreqDist from nltk.metrics import jaccard_distance from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import nltk nltk.download('stopwords') nltk.download('punkt') from moviepy.video.io.VideoFileClip import VideoFileClip from moviepy.video.VideoClip import ImageClip from datetime import datetime import moviepy.editor as mpy import gradio as gr huggingfacehub_api_token = os.getenv("HF_TOKEN") class VideoEditor(): def __init__(self): repo_id = "mistralai/Mistral-7B-Instruct-v0.2" self.llm = HuggingFaceHub( huggingfacehub_api_token=huggingfacehub_api_token, repo_id=repo_id, model_kwargs={"temperature": 0.2,"max_new_tokens":1000} ) # self.data_json = {'topics': []} def load_model(self,model_selected): """ Load a pre-trained machine learning model specified by the `model_selected` parameter using the `whisper` library and modify it to output word timestamps. Parameters: ----------- model_selected : str A string specifying the name of the pre-trained machine learning model to load. Returns: -------- model : object A modified version of the loaded pre-trained machine learning model that outputs timestamps for individual words. """ model = whisper.load_model(model_selected) modify_model(model) return model def whisper_result_to_srt(self,result): """ Convert the output of the Whisper speech recognition model into SubRip subtitle format. Parameters: ----------- result : dict A dictionary containing the output of the Whisper speech recognition model, including word-level timestamps. Returns: -------- srt : str A string in SubRip subtitle format, containing the word-level transcriptions and timing information from the Whisper output. Notes: ------ This function takes the output of the Whisper speech recognition model, which includes word-level timestamps for each segment of the input audio file, and converts it into SubRip subtitle format. The resulting subtitle file can be used to display captions or transcripts alongside a video recording of the original audio. """ text = [] for i,s in enumerate(result['segments']): text.append(str(i+1)) time_start = s['start'] hours, minutes, seconds = int(time_start/3600), (time_start/60) % 60, (time_start) % 60 timestamp_start = "%02d:%02d:%06.3f" % (hours, minutes, seconds) timestamp_start = timestamp_start.replace('.',',') time_end = s['end'] hours, minutes, seconds = int(time_end/3600), (time_end/60) % 60, (time_end) % 60 timestamp_end = "%02d:%02d:%06.3f" % (hours, minutes, seconds) timestamp_end = timestamp_end.replace('.',',') text.append(timestamp_start + " --> " + timestamp_end) text.append(s['text'].strip() + "\n") return "\n".join(text) # model_selected = 'tiny' def transcribe_video(self,vid, model_selected): """ Transcribe the audio in a video file using a pre-trained machine learning model and return the transcription and its corresponding timestamps in a subtitle format. Parameters: ----------- vid : str A string specifying the path to the video file to be transcribed. model_selected : str A string specifying the name of the pre-trained machine learning model to use for transcription. Returns: -------- result : dict A dictionary containing the transcription and its corresponding timestamps in a subtitle format. """ model = self.load_model(model_selected) options = whisper.DecodingOptions(fp16=False) result = model.transcribe(vid, **options.__dict__) result['srt'] = self.whisper_result_to_srt(result) return result def to_srt(self,lines: List[dict], strip=False) -> str: """ lines: List[dict] [{start:, end:, text:}, ...] """ def secs_to_hhmmss(secs): mm, ss = divmod(secs, 60) hh, mm = divmod(mm, 60) return f'{hh:0>2.0f}:{mm:0>2.0f}:{ss:0>6.3f}'.replace(".", ",") srt_str = '\n'.join( f'{i}\n' f'{secs_to_hhmmss(sub["start"])} --> {secs_to_hhmmss(sub["end"])}\n' f'{sub["text"].strip() if strip else sub["text"]}\n' for i, sub in enumerate(lines, 1)) # if save_path: # with open(save_path, 'w', encoding='utf-8') as f: # f.write(srt_str) # print(f'Saved: {os.path.abspath(save_path)}') return srt_str def tighten_timestamps(self,res: dict, end_at_last_word=True, end_before_period=False, start_at_first_word=False) -> dict: res = deepcopy(res) for i in range(len(res['segments'])): if start_at_first_word: res['segments'][i]['start'] = res['segments'][i]['word_timestamps'][0]['timestamp'] if end_before_period and \ res['segments'][i]['word_timestamps'][-1] == '.' and \ len(res['segments'][i]['word_timestamps']) > 1: res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-2]['timestamp'] elif end_at_last_word: res['segments'][i]['end'] = res['segments'][i]['word_timestamps'][-1]['timestamp'] return res def results_to_sentence_srt(self,res: dict, end_at_last_word=False, end_before_period=False, start_at_first_word=False, strip=False): """ Parameters ---------- res: dict results from modified model srt_path: str output path of srt end_at_last_word: bool set end-of-sentence to timestamp-of-last-token end_before_period: bool set end-of-sentence to timestamp-of-last-non-period-token start_at_first_word: bool set start-of-sentence to timestamp-of-first-token strip: bool perform strip() on each sentence """ strict = any((end_at_last_word, end_before_period, start_at_first_word)) segs = self.tighten_timestamps(res, end_at_last_word=end_at_last_word, end_before_period=end_before_period, start_at_first_word=start_at_first_word)['segments'] \ if strict else res['segments'] max_idx = len(segs) - 1 i = 1 while i <= max_idx: if not (segs[i]['end'] - segs[i]['start']): if segs[i - 1]['end'] == segs[i]['end']: segs[i - 1]['text'] += (' ' + segs[i]['text'].strip()) del segs[i] max_idx -= 1 continue else: segs[i]['start'] = segs[i - 1]['end'] i += 1 srt = self.to_srt(segs, strip=strip) return srt def extract_timestamps_and_text(self,input_text): timestamp_pattern = re.compile(r'(\d{2}:\d{2}:\d{2}.\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2}.\d{3})\n(.+)') matches = timestamp_pattern.findall(input_text) data = [] for match in matches: start_timestamp, end_timestamp, text = match data.append({ 'start_timestamp': start_timestamp, 'end_timestamp': end_timestamp, 'text': text.strip() }) return data def sentence_timestamp(self,data): result_sentences = [] current_sentence = "" current_start_timestamp = "" for entry in data: text = entry['text'] start_timestamp = entry['start_timestamp'] end_timestamp = entry['end_timestamp'] # If the current sentence is empty, update start timestamp if not current_sentence: current_start_timestamp = start_timestamp # Concatenate sentences until a sentence ends with a full stop current_sentence += " " + text if text.endswith('.'): result_sentences.append({ 'start_timestamp': current_start_timestamp, 'end_timestamp': end_timestamp, 'text': current_sentence.strip() }) current_sentence = "" return result_sentences def timestamp_text_to_list(self,result_sentences): text_list = [item['text'] for item in result_sentences] return text_list def list_to_json(self,text_list): jsonfile = { "sentences": text_list } json_text = str(jsonfile) return json_text def video_qa_generate_contract(self,text,question): template = """you are the german language and universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.your returning answer must in user's language.otherwise reply i don't know. extracted_text:{text} user_question:{question}""" prompt = PromptTemplate(template=template, input_variables=["text","question"]) llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm) result = llm_chain.run({"text":text,"question":question}) print() print() print("this is answer:",result) return result def topic_generate_contract(self,json_text,subrip): template = """your first task is extract all topics discussed in the given content. second task is analyze the given paragraph and extract answer for the first task's extracted topics. don't genarate answer yourself just extract related answer from the given paragraph. returing answer format: Topic:Topic Sentence:*Topic* Sentence ```content:{content}``` ```paragraph:{paragraph}``` """ prompt = PromptTemplate(template=template, input_variables=["content","paragraph"]) llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.llm) result = llm_chain.run({"content":json_text,"paragraph":subrip['text']}) return result def video_qa_preprocess_sentence(self,sentence): stop_words = set(stopwords.words('english')) words = word_tokenize(sentence.lower()) filtered_words = [word for word in words if word.isalnum() and word not in stop_words] return filtered_words def compute_similarity(self,sentence1, sentence2): words1 = self.video_qa_preprocess_sentence(sentence1) words2 = self.video_qa_preprocess_sentence(sentence2) freq_dist1 = FreqDist(words1) freq_dist2 = FreqDist(words2) jaccard = 1 - jaccard_distance(set(freq_dist1), set(freq_dist2)) return jaccard def video_qa_find_most_similar(self,sentence_list, target_sentence): similarities = [self.compute_similarity(target_sentence, sentence) for sentence in sentence_list] # Find the index of the most similar sentence most_similar_index = similarities.index(max(similarities)) # Return the most similar sentence return sentence_list[most_similar_index] def video_qa_start_end_timestamp(self,result,answer): appended_text = [] for item in result: appended_text.append(item['text']) # Find the most similar sentence matched_sentence = self.video_qa_find_most_similar(appended_text, answer) start_time="" end_time="" for entry in result: if matched_sentence in entry['text']: start_time = entry['start_timestamp'] end_time = entry['end_timestamp'] print(start_time+"\n"+end_time) return start_time,end_time # Function to preprocess and tokenize a sentence def preprocess_sentence(self,sentence): stop_words = set(stopwords.words('english')) ps = PorterStemmer() # Tokenize and remove stopwords words = word_tokenize(sentence) words = [ps.stem(word.lower()) for word in words if word.isalnum() and word.lower() not in stop_words] return ' '.join(words) # Function to find the most similar sentence in list1 for a given sentence in list2 def topic_find_most_similar(self,sentence, list1): similarities = [] processed_sentence = self.preprocess_sentence(sentence) for candidate_sentence in list1: similarity = self.calculate_cosine_similarity(processed_sentence, candidate_sentence) similarities.append(similarity) # Find the index of the most similar sentence in list1 max_similarity_index = similarities.index(max(similarities)) return list1[max_similarity_index] # Function to calculate cosine similarity between two sentences def calculate_cosine_similarity(self,sentence1, sentence2): # Create a TF-IDF vectorizer vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform([sentence1, sentence2]) # Calculate cosine similarity cosine_sim = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0] return cosine_sim def timestamp_to_seconds(self,timestamp): time_format = "%H:%M:%S,%f" dt = datetime.strptime(timestamp, time_format) return dt.hour * 3600 + dt.minute * 60 + dt.second + dt.microsecond / 1e6 def cut_video(self,input_file, output_file, start_timestamp, end_timestamp): # Convert timestamps to seconds start_time = self.timestamp_to_seconds(start_timestamp) end_time = self.timestamp_to_seconds(end_timestamp) # Use moviepy to cut both video and audio video_clip = VideoFileClip(input_file).subclip(start_time, end_time) video_clip.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True) def start_end_timestamp(self,result,matched_sentence): start_time="" end_time="" for entry in result: if matched_sentence in entry['text']: start_time = entry['start_timestamp'] end_time = entry['end_timestamp'] # print(start_time+"\n"+end_time) return start_time,end_time def video_write_funcion(self,vid,answer,text_list,result_sentences): video = mpy.VideoFileClip(vid) topics = {} topics_list = answer.strip().split("\n\n") # Remove leading/trailing whitespaces for topic in topics_list: lines = topic.split("\n") if len(lines) > 0: topic = lines[0].split(":")[1].strip() sentence = "".join([line.split(":")[1].strip() for line in lines[1:]]) sentence_list = sentence.split(".") unique_similar_sentences = [] list1 = text_list # Find the most similar sentence in list1 for each sentence in list2 for sentence2 in sentence_list: most_similar_sentence = self.topic_find_most_similar(sentence2, list1) # Check if the sentence is not already in the list before appending if most_similar_sentence not in unique_similar_sentences: unique_similar_sentences.append(most_similar_sentence) # Print the unique most similar sentences clips = [] for sentence in unique_similar_sentences: # print(type(sentence)) start_time,end_time = self.start_end_timestamp(result_sentences,sentence) clip = video.subclip(start_time, end_time) clips.append(clip) concatenated_clip = mpy.concatenate_videoclips(clips) topics[topic] = concatenated_clip for topic, clip in topics.items(): clip.write_videofile(f"{topic}.mp4") def video_qa_main(self,input_path,video,question): if input_path: input_path = self.Download(input_path) subtitle = self.transcribe_video(input_path,'medium') elif video: subtitle = self.transcribe_video(video,'medium') input_path = video print(subtitle['text']) text = subtitle['text'] answer = self.video_qa_generate_contract(text,question) print("video_qa_generate_contract") subrip_text = self.results_to_sentence_srt(subtitle) result = self.extract_timestamps_and_text(subrip_text) sent = self.sentence_timestamp(result) start_time,end_time = self.video_qa_start_end_timestamp(sent,answer) output_video_path = 'output_video.mp4' self.cut_video(input_path, output_video_path, start_time, end_time) return output_video_path def Download(self,link): youtubeObject = YouTube(link) youtubeObject = youtubeObject.streams.get_highest_resolution() try: file_name = youtubeObject.download() return file_name except: print("An error has occurred") print("Download is completed successfully") def topic_main(self,input_path,video): if input_path: input_path = self.Download(input_path) subrip = self.transcribe_video(input_path,'medium') elif video: subrip = self.transcribe_video(video,'medium') input_path = video print(subrip['text']) text = self.results_to_sentence_srt(subrip) print("results_to_sentence_srt") data = self.extract_timestamps_and_text(text) print("extract_timestamps_and_text") result_sentences = self.sentence_timestamp(data) text_list = self.timestamp_text_to_list(result_sentences) # print(text_list) json_text = self.list_to_json(text_list) # print(json_text) print("list_to_json") answer = self.topic_generate_contract(json_text,subrip) # print(answer) print("topic_generate_contract") self.video_write_funcion(input_path,answer,text_list,result_sentences) return "Topic Video Writted Successfully." with gr.Blocks(css="style.css",theme="freddyaboulton/test-blue") as demo: video_editor = VideoEditor() gr.HTML("""

Video Question Answering & Topic Extracter

""") with gr.Tab("Video QA"): with gr.Row(): youtube_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=") with gr.Row(): video = gr.Video(sources="upload",height=200,width=300) with gr.Row(): query = gr.Textbox(label="Query") with gr.Row(): output_video = gr.Video(height=200,width=300) # if video and query: # submit_btn.click(video_editor.video_qa_main,[video,query],output_video) # elif youtube_link and query: query.submit(video_editor.video_qa_main,[youtube_link,video,query],output_video) with gr.Tab("Topic Extract"): with gr.Row(): yt_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=") with gr.Row(): video = gr.Video(sources="upload",height=200,width=300) with gr.Row(): submit_btn = gr.Button(value="Submit") with gr.Row(): textbox = gr.Textbox(label = "Status") submit_btn.click(video_editor.topic_main,[yt_link,video],textbox) demo.launch()