File size: 25,494 Bytes
e989038
 
 
 
 
 
 
 
 
6808403
e989038
 
 
 
 
 
 
51e24bb
2caca5f
e989038
6808403
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b60192
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2caca5f
e0e0d0f
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e50a723
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e24bb
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568515
cf8d6fe
f6f9a0e
 
 
 
 
cf8d6fe
e989038
 
1568515
51e24bb
1568515
e989038
 
 
 
 
1568515
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396f400
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f5d7e
 
 
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a40c1a
e989038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import os
from typing import List, Union, Tuple, Dict
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI as OpenAILLM
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import gradio as gr
from openai import AzureOpenAI
import matplotlib.pyplot as plt
import pandas as pd
import logging
from PyPDF2 import PdfReader
import re
import plotly.graph_objects as go
import csv
from langchain_openai import AzureChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings


# Configure logging
logging.basicConfig(
    filename='Resume_Analyzer.log',  # You can adjust the log file name here
    filemode='a',
    format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
    datefmt='%Y-%b-%d %H:%M:%S'
)
LOGGER = logging.getLogger(__name__)

log_level_env = 'INFO'  # You can adjust the log level here
log_level_dict = {
    'DEBUG': logging.DEBUG,
    'INFO': logging.INFO,
    'WARNING': logging.WARNING,
    'ERROR': logging.ERROR,
    'CRITICAL': logging.CRITICAL
}
if log_level_env in log_level_dict:
    log_level = log_level_dict[log_level_env]
else:
    log_level = log_level_dict['INFO']
LOGGER.setLevel(log_level)

class JobPotral:

    def __init__(self) -> None:

      """
      Initialize the JobPotral object.

      Sets the OpenAI API key in the environment.
      """
      self.client = AzureOpenAI(azure_deployment = "GPT-3")

      self.answer = ""

    def get_empty_state(self) -> dict:


        """
        Get an empty state for the knowledge base.

        Returns:
        - dict: An empty state dictionary.
        """

        LOGGER.info("Creating Empty Dictionary...")

        return {"knowledge_base": None}

    def create_knowledge_base(self, docs: List[str]) -> FAISS:

        """
        Create a knowledge base from a set of documents.

        Args:
        - docs (list): List of documents to create a knowledge base from.

        Returns:
        - knowledge_base: The created knowledge base.
        """
        try:
          LOGGER.info("Creating Knowledge Base...")

          # split into chunks
          text_splitter = CharacterTextSplitter(
              separator="\n", chunk_size=500, chunk_overlap=0, length_function=len
          )
          chunks = text_splitter.split_documents(docs)

          # Create embeddings
          embeddings = AzureOpenAIEmbeddings(
                azure_deployment="text-embedding-3-large")

          #create knowledge base
          knowledge_base = FAISS.from_documents(chunks, embeddings)

          #return knowledge base
          return knowledge_base

        except Exception as e:
            LOGGER.error(f"Error creating knowledge base: {str(e)}")
            raise


    def upload_file(self, file_obj: gr.File) -> Tuple[str, Union[str, Dict[str, FAISS]]]:

        """
        Upload a file and create a knowledge base.

        Args:
        - file_obj: File object representing the uploaded file.

        Returns:
        - tuple: Tuple containing file name and the knowledge base of given document.
        """

        try:
        
          # Log that the process of unstructuring files is starting
          LOGGER.info("Unstructuring Files...")

          # Initialize an UnstructuredFileLoader with the uploaded file and a loading strategy
          loader = UnstructuredFileLoader(file_obj.name, strategy="fast")

          # Load the document(s) using the file loader
          docs = loader.load()

          # Create a knowledge base from the loaded documents
          knowledge_base = self.create_knowledge_base(docs)

          # Return the file name and the knowledge base as a dictionary
          return file_obj.name, {"knowledge_base": knowledge_base}

        except Exception as e:
            LOGGER.error(f"Error uploading file: {str(e)}")
            raise

    def answer_question(self, question: str, state: Dict[str, Union[None, Dict[str, FAISS]]], chat_history) -> str:

        """
        Answer a question using the knowledge base.

        Args:
        - question (str): The question to answer.
        - state (dict): The state containing the knowledge base.

        Returns:
        - str: The answer to the question.
        """

        try:
            # Log that the model is generating a response
            LOGGER.info("Generating Responce From Model...")

            # Access the knowledge base from the state
            knowledge_base = state["knowledge_base"]

            # Perform similarity search on the knowledge base for the given question
            docs = knowledge_base.similarity_search(question)

            # Initialize the OpenAILLM model
            llm = AzureChatOpenAI(azure_deployment="GPT-3")

            # Load a question-answering chain of models
            chain = load_qa_chain(llm, chain_type="stuff")

            # Run the question-answering chain on the input documents and question
            response = chain.run(input_documents=docs, question=question)

            # Append the question and response to the chat history
            chat_history.append((question, response))

            # Return an empty string and the updated chat history
            return "", chat_history

        except Exception as e:
            # Log an error if an exception occurs during question answering
            LOGGER.error(f"Error answering question: {str(e)}")
            raise

    def get_graph(self, file_path: str) -> Tuple[go.Figure, go.Figure, go.Figure]:

        """
        Generate three types of charts based on data from a CSV file.

        Parameters:
        - file_path (str): The path to the CSV file.

        Returns:
        Tuple[go.Figure, go.Figure, go.Figure]: A tuple containing three Plotly figures (Bar chart, Pie chart, and Histogram).
        """
        try:
            LOGGER.info("Create graph for CSV file...") 

            # Read data from CSV file into a DataFrame
            df = pd.read_csv(file_path.name)

            # Chart 1: Bar chart - Number of members by domain
            domain_counts = df['Domain'].value_counts()
            domain_fig = go.Figure(go.Bar(x=domain_counts.index, y=domain_counts, marker_color='skyblue'))
            domain_fig.update_layout(title='Number of Members by Domain', xaxis_title='Domain', yaxis_title='Number of Members')

            # Chart 2: Pie chart - Distribution of working time
            working_time_counts = df['Working Time'].value_counts()
            working_time_fig = go.Figure(go.Pie(labels=working_time_counts.index, values=working_time_counts,
                                              pull=[0.1, 0], marker_colors=['lightcoral', 'lightskyblue']))
            working_time_fig.update_layout(title='Distribution of Working Time')

            # Chart 3: Histogram - Distribution of career gaps
            career_gap_fig = go.Figure(go.Histogram(x=df['Career Gap (years)'], nbinsx=20, marker_color='lightgreen',
                                                    marker_line_color='black', marker_line_width=1.2))
            career_gap_fig.update_layout(title='Distribution of Career Gaps', xaxis_title='Career Gap (years)', yaxis_title='Number of Members')

            return domain_fig, working_time_fig, career_gap_fig

        except Exception as e:
            # Handle exceptions
            LOGGER.error(f"Error in get_graph: {str(e)}")
            raise

    def extract_text_from_pdf(self, pdf_path: str) -> str:

        """
        Extracts text from a PDF file.

        Args:
            pdf_path (str): The path to the PDF file.

        Returns:
            str: The extracted text from the PDF.
        """

        text = ''
        try:
            LOGGER.info("Extract text from pdf...") 

            # Load PDF document
            pdf = PdfReader(pdf_path)

            # Extract text from each page and pass it to the process_text function
            for page_number in range(len(pdf.pages)):

                try:
                    # Extract text from the page
                    page = pdf.pages[page_number]

                    # Extract page text
                    text += page.extract_text()
                except Exception as e:
                    LOGGER.error(f"Error extracting text from page {page_number + 1}: {e}")

            #return extracted text
            return text

        except Exception as e:
            LOGGER.error(f"Error reading PDF file: {e}")
            raise

    def matching_percentage(self, resume_path: str, job_description_path: str) -> Tuple[str, go.Figure]:

        """
        Assess the matching percentage between a resume and a job description using the OpenAI GPT-3.5-turbo model.

        Parameters:
        - resume_path (str): Path to the resume file (PDF format).
        - job_description_path (str): Path to the job description file (PDF format).

        Returns:
        Tuple[str, go.Figure]: A tuple containing the matching result string and a Plotly figure.
        """
        try:
            LOGGER.info("Get matching percentage...") 

            # Extract text from the resume and job description PDFs
            resume = self.extract_text_from_pdf(resume_path.name)
            job_description = self.extract_text_from_pdf(job_description_path.name)

            # Create a conversation for the OpenAI chat API
            conversation = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": f"""Given the job description and the resume, assess the matching percentage to 100 and if 100 percentage not matched mention the remaining percentage with reason. **Job Description:**{job_description}**Resume:**{resume}
                                                **Detailed Analysis:**
                                                        the result should be in this format:
                                                        Matched Percentage: [matching percentage].
                                                        Reason            : [Mention Reason and keys from Job Description and Resume get this matched percentage.].
                                                        Skills To Improve : [Mention the skills How to improve and get match the given Job Description].
                                                        Keywords          : [matched key words from Job Description and Resume].
                """}
            ]

            # Call OpenAI GPT-3.5-turbo
            chat_completion = self.client.chat.completions.create(
                model = "ChatGPT",
                messages = conversation,
                max_tokens=500,
                temperature=0
            )

            matched_result = chat_completion.choices[0].message.content

            # Generate a Plotly figure for visualization
            fig = self.get_ploty(matched_result)

            return matched_result, fig

        except Exception as e:
            # Handle exceptions
            LOGGER.error(f"Error in matching_percentage: {str(e)}")
            raise

    def get_ploty(self, result: str) -> go.Figure:

        """
        Extracts matched percentage from the input result and creates a pie chart using Plotly.

        Parameters:
        - result (str): The input string containing information about the matched percentage.

        Returns:
        - go.Figure: Plotly figure object representing the pie chart.
        """

        try:
            LOGGER.info("Create Pie chart for Matched percentage...") 

            # Use regex with case-insensitive flag to extract the matched percentage
            match_percentage = re.search(r'matched percentage: (\d+)%', result, re.IGNORECASE)

            # If the specific format is found, extract the matched percentage
            if match_percentage:
                matched_percentage = int(match_percentage.group(1))

            else:
                # If the specific format is not found, try another regex pattern
                match_percentage = re.search(r'(\d+)%', result, re.IGNORECASE)
                matched_percentage = int(match_percentage.group(1))

            # Creating a pie chart with plotly
            labels = ['Matched', 'Not Matched']
            values = [matched_percentage, 100 - matched_percentage]

            fig = go.Figure(data=[go.Pie(labels=labels, values=values, pull=[0.1, 0])])
            fig.update_layout(title='Matched Percentage')

            return fig

        except Exception as e:
            # raise the exception
            LOGGER.error(f"Error processing result:{str(e)}")
            raise

    def count_reviews(self) -> go.Figure:

        """
        Count and visualize the distribution of positive, negative, and neutral reviews.

        Returns:
            go.Figure: Plotly figure showing the distribution of reviews.
        """     

        try: 
            LOGGER.info("Count reviews...") 

            # Extracted data from the reviews 
            data = self.answer

            # Split the data into sections based on the review categories
            sections = [section.strip() for section in data.split("\n\n")]
            
            # Initialize counters for positive, neutral, and negative reviews
            positive_count = 0
            neutral_count = 0
            negative_count = 0

            # Initialize counters for positive, neutral, and negative reviews
            for section in sections:
                lines = section.split('\n')

                if len(lines) > 1:
                    category = lines[0].strip()
                    reviews = lines[1:]
                    count = len(reviews)
                    
                    # Update counts based on the review category
                    if "Positive" in category:
                        positive_count += count
                    elif "Suggestion" in category:
                        neutral_count += count
                    elif "Negative" in category:
                        negative_count += count

            # Data for the bar graph
            labels = ['Positive', 'Negative', 'Neutral']
            counts = [positive_count, negative_count, neutral_count]

            # Creating the bar graph using Plotly
            fig = go.Figure(data=[go.Bar(x=labels, y=counts, marker=dict(color=['green', 'red', 'gray']))])

            # Adding title and labels
            fig.update_layout(title='Distribution of Reviews',
                              xaxis=dict(title='Sentiment'),
                              yaxis=dict(title='Number of Reviews'))

            return fig

        except Exception as e:
            # Log and raise an error in case of an exception
            LOGGER.error(f"Error in count_reviews: {e}")
            raise

    def csv_to_list(self, file_path: str) -> list:

        """
        Read a CSV file and convert it to a list.

        Args:
            file_path (str): Path to the CSV file.

        Returns:
            list: List containing data from the CSV file.
        """
        try:   
            LOGGER.info("Extract CSV...") 
            # Initialize an empty list to store CSV data   
            data_list = []

            # Open the CSV file and read its contents
            with open(file_path.name, 'r',newline='') as csv_file:

                csv_reader = csv.reader(csv_file)

                next(csv_reader, None) # Skip the header row

                for row in csv_reader:
                    # Convert each row to a string and append to the list
                    data_list.append("".join(row))

            return data_list

        except Exception as e:
            # Log and raise an error in case of an exception
            LOGGER.error(f"Error in csv_to_list: {e}")
            raise        

    def extract_top_reviews(self, file_path: str) -> tuple:

        """
        Extract the top suggestion, positive, and negative reviews from a CSV file.

        Args:
            file_path (str): Path to the CSV file.

        Returns:
            tuple: Suggestion reviews, positive reviews, and negative reviews.
        """ 

        try:    
            LOGGER.info("Extract top reviews...") 

            # Set the number of top reviews to extract
            top_count = 5

            # Split the reviews into suggestion, positive, and negative categories
            suggestion_reviews,positive_reviews,negative_reviews = self.split_reviews(file_path)
            
            # Extract the top suggestion reviews
            reviews_list = suggestion_reviews.split("\n")  # Assuming each review is on a new line
            suggest_reviews = "\n\n ".join(reviews_list[:top_count])

            # Extract the top positive reviews
            reviews_list = positive_reviews.split("\n")  # Assuming each review is on a new line
            pos_reviews ="\n\n ".join(reviews_list[:top_count])

            # Extract the top negative reviews
            reviews_list = negative_reviews.split("\n")  # Assuming each review is on a new line
            neg_reviews = "\n\n ".join(reviews_list[:top_count])

            return suggest_reviews,pos_reviews,neg_reviews

        except Exception as e:
            # Log and raise an error in case of an exception
            LOGGER.error(f"Error in extract_top_reviews: {e}")
            raise        

    def split_reviews(self, file_path: str) -> tuple:

        """
        Split reviews into suggestion, positive, and negative categories using OpenAI API.

        Args:
            file_path (str): Path to the CSV file.

        Returns:
            tuple: Suggestion reviews, positive reviews, and negative reviews.
        """      
        try:
            LOGGER.info("Classify reviews...")  

            # Convert CSV file to a list of reviews
            reviews = self.csv_to_list(file_path)

            prompt_template_ = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": f"""read and analyse to return suggestion reviews,postive reviews and negative reviews with label ***{reviews}***.
                the result should be in this format:
                Suggestion Reviews:
                Positive Reviews:
                Negative Reviews:"""}
            ]
            # Construct the prompt for OpenAI API
            # Call OpenAI API with the given prompt
            response = self.client.chat.completions.create(
                model="ChatGPT",  # You can use a different engine
                messages=prompt_template_,
                max_tokens=200,
                temperature = 0,
            )

            # Extract and return the generated text
            self.answer += response.choices[0].message.content

            # Split the generated text into suggestion, positive, and negative reviews
            suggestion_reviews = self.answer.split("Suggestion Reviews:")[1].split("Positive Reviews:")[0].strip()
            positive_reviews = self.answer.split("Positive Reviews:")[1].split("Negative Reviews:")[0].strip()
            negative_reviews = self.answer.split("Negative Reviews:")[1].strip()

            return suggestion_reviews,positive_reviews,negative_reviews

        except Exception as e:
            # Log and raise an error in case of an exception
            LOGGER.error(f"Error in split_reviews: {e}")
            raise      


    def file_name(self,upload_file:str) -> str:
        
        """
        Get the name of the uploaded file.

        Args:
            upload_file: File object.

        Returns:
            str: File name.
        """
        try:
          # return file path
          return upload_file.name
        except Exception as e:
            LOGGER.error(f"Error in file_name: {e}")
            raise          

    def gradio_interface(self):

        """
        Create a Gradio interface for the JobPotral.
        """

        with gr.Blocks(css="style.css",theme='freddyaboulton/test-blue') as demo:
          gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center>
          <center><h1 class ="center" style="color:#fff"></h1></center>
          <br><center><h1 style="color:#fff">Job Potral Tool</h1></center>""")  
          
          # QA 
          state = gr.State(self.get_empty_state())
          with gr.Tab("QA and Graph"):
            with gr.Column(elem_id="col-container"):
              gr.Markdown("**Upload your file**")
              with gr.Row(elem_id="row-flex"):
                  with gr.Column(scale=0.90, min_width=160):
                      file_output = gr.File(elem_classes="filenameshow")
                  with gr.Column(scale=0.10, min_width=160):
                      upload_button = gr.UploadButton(
                          "Browse File", file_types=[".txt", ".pdf", ".doc", ".docx",".csv"],
                          elem_classes="filenameshow")
              with gr.Row(elem_id="col-container"):
                with gr.Column():
                  analyse_graph = gr.Button("Analyse Graph")

            with gr.TabItem("Chatbot"):
              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=1, min_width=0):
                      chatbot = gr.Chatbot(label = "Resume QA")
                      msg = gr.Textbox(label = "Question")
                      clear = gr.ClearButton([msg, chatbot])

            # analyse graph
            with gr.TabItem("Graph"):
              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=1.0, min_width=150):
                  domain_graph = gr.Plot(label="Domain Graph")
              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=1.0, min_width=150):
                  working_time_graph = gr.Plot(label="Working Time Graph")
              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=1.0, min_width=150):
                  career_gap_graph = gr.Plot(label="Career Gap Graph")
          
          # resume analyser
          with gr.Tab("Resume Analyzer"):
              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=0.55, min_width=150, ):
                  job_description = gr.File(label="Job Description", file_types = [".pdf",".txt"])
                with gr.Column(scale=0.55, min_width=150):
                  resume = gr.File(label="Resume", file_types = [".pdf",".txt"])

              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=0.80, min_width=150):
                  analyse_btn = gr.Button("Analyse")
                with gr.Column(scale=0.20, min_width=150):
                  clear_btn = gr.ClearButton()

              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=1.0, min_width=150):
                  matched_result = gr.Textbox(label="Matched Result", lines=10)

              with gr.Row(elem_id="col-container"):
                with gr.Column(scale=1.0, min_width=150):
                  pychart = gr.Plot(label="Matching Percentage Chart")

          # review analyser 
          with gr.Tab("Reviews Analyzer"):
              with gr.Row(elem_id="col-container"):
                  with gr.Column(scale=0.90, min_width=160):
                      file_output_review = gr.File(elem_classes="filenameshow")
                  with gr.Column(scale=0.10, min_width=160):
                      upload_button_review = gr.UploadButton(
                          "Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
                          elem_classes="filenameshow")

              with gr.Row(elem_id="col-container"):
                  split_reviews_top_5_btn = gr.Button("Split TOP 5 Reviews ")

              with gr.Row(elem_id="col-container"):
                  suggested_reviews = gr.Textbox(label="Suggested Reviews", lines=10)
                  postive_reviews =gr.Textbox(label="Positive Reviews", lines=10)
                  negative_reviews = gr.Textbox(label="Negative Reviews", lines=10)

              with gr.Row(elem_id="col-container"):
                  sentiment_graph_btn = gr.Button("Sentiment Graph")

              with gr.Row(elem_id="col-container"):
                  sentiment_graph = gr.Plot(label="Sentiment Analysis")
          # QA 
          upload_button.upload(self.upload_file, upload_button, [file_output,state])

          msg.submit(self.answer_question, [msg, state, chatbot], [msg, chatbot])

          # analyse graph
          analyse_graph.click(self.get_graph, upload_button, [domain_graph, working_time_graph, career_gap_graph])


          # resume analyser
          analyse_btn.click(self.matching_percentage, [resume,job_description], [matched_result, pychart])


          # review analyser 
          upload_button_review.upload(self.file_name,upload_button_review,file_output_review)

          sentiment_graph_btn.click(self.count_reviews,[],sentiment_graph)
          
          split_reviews_top_5_btn.click(self.extract_top_reviews,upload_button_review,[suggested_reviews,postive_reviews,negative_reviews])          

        demo.launch(debug = True)

if __name__ == "__main__":

  analyze = JobPotral()
  analyze.gradio_interface()