Matheus Ribeiro de Oliveira commited on
Commit
4f9dece
Β·
1 Parent(s): 9be17fb
Files changed (4) hide show
  1. README.md +5 -3
  2. afm_gradio.py +408 -0
  3. app.py +409 -0
  4. scott.png +0 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: Image Editing
3
- emoji: 🐨
4
- colorFrom: purple
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 4.39.0
8
  app_file: app.py
@@ -10,3 +10,5 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
  ---
2
  title: Image Editing
3
+ emoji: πŸŒ–
4
+ colorFrom: green
5
+ colorTo: red
6
  sdk: gradio
7
  sdk_version: 4.39.0
8
  app_file: app.py
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
+ To run this app on GPU, please follow the instructions on the repo: https://github.com/matt576/image-editing
afm_gradio.py ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image, ImageDraw
3
+
4
+
5
+ def run_afm_app(task_selector, input_image, mask_image, text_input, text_input_x, text_input_gsam, coord_input,
6
+ ddim_steps, ddim_steps_pipe, inpaint_input_gsam, text_input_inpaint_pipe, text_input_restyling,
7
+ blur, sharpen, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint, prompt_background , steps_br,
8
+ str_res, gs_res, np_res, steps_res, np_inpaint, steps_inpaint, prompt_txt2img, np_txt2img, gs_txt2img,
9
+ steps_txt2img, steps_super, dilation_bool, dilation_value, steps_inp):
10
+
11
+ print(f"Task selected: {task_selector}")
12
+
13
+ if task_selector == "SAM":
14
+ from mask_sam import sam_gradio
15
+ return sam_gradio(input_image, coord_input, dilation_bool, dilation_value)
16
+
17
+ if task_selector == "GroundedSAM":
18
+ from mask_groundedsam import groundedsam_mask_gradio
19
+ return groundedsam_mask_gradio(input_image, text_input, dilation_bool, dilation_value)
20
+
21
+ if task_selector == "Stable Diffusion with ControlNet Inpainting":
22
+ from inpaint_sd_controlnet import controlnet_inpaint_gradio
23
+ return controlnet_inpaint_gradio(input_image, mask_image, text_input_x)
24
+
25
+ if task_selector == "Stable Diffusion v1.5 Inpainting":
26
+ from inpaint_sd import inpaint_sd_gradio
27
+ return inpaint_sd_gradio(input_image, mask_image, text_input_x, steps_inp)
28
+
29
+ if task_selector == "Stable Diffusion XL Inpainting":
30
+ from inpaint_sdxl import inpaint_sdxl_gradio
31
+ return inpaint_sdxl_gradio(input_image, mask_image, text_input_x, steps_inp)
32
+
33
+ if task_selector == "Kandinsky v2.2 Inpainting":
34
+ from inpaint_kandinsky import inpaint_kandinsky_gradio
35
+ return inpaint_kandinsky_gradio(input_image, mask_image, text_input_x, steps_inp)
36
+
37
+ if task_selector == "GroundedSAM Inpainting":
38
+ from inpaint_groundedsam import groundedsam_inpaint_gradio
39
+ return groundedsam_inpaint_gradio(input_image, text_input_gsam, inpaint_input_gsam)
40
+
41
+ if task_selector == "Object Removal LDM":
42
+ from eraser_ldm import ldm_removal_gradio
43
+ return ldm_removal_gradio(input_image, mask_image, ddim_steps)
44
+
45
+ if task_selector == "Restyling - Stable Diffusion v1.5":
46
+ from restyling_sd import restyling_gradio
47
+ return restyling_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
48
+
49
+ if task_selector == "Restyling - Stable Diffusion XL":
50
+ from restyling_sdxl import restyling_sdxl_gradio
51
+ return restyling_sdxl_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
52
+
53
+ if task_selector == "Restyling - Kandinsky v2.2":
54
+ from restyling_kandinsky import restyling_kandinsky_gradio
55
+ return restyling_kandinsky_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
56
+
57
+ if task_selector == "Superresolution - LDM x4 OpenImages":
58
+ from superres_ldm import superres_gradio
59
+ return superres_gradio(input_image, steps_super)
60
+
61
+ if task_selector == "Superresolution - Stability AI x4 Upscaler":
62
+ from superres_upscaler import superres_upscaler_gradio
63
+ return superres_upscaler_gradio(input_image, steps_super)
64
+
65
+ if task_selector == "LDM Removal Pipeline":
66
+ from eraser_ldm_pipe import ldm_removal_pipe_gradio
67
+ return ldm_removal_pipe_gradio(input_image, coord_input, ddim_steps_pipe)
68
+
69
+ if task_selector in ["Stable Diffusion v1.5 Inpainting Pipeline", "Stable Diffusion XL Inpainting Pipeline", "Kandinsky v2.2 Inpainting Pipeline"]:
70
+ from inpaint_pipe import inpaint_pipe_gradio
71
+ return inpaint_pipe_gradio(task_selector, input_image, coord_input, text_input_inpaint_pipe, np_inpaint, steps_inpaint)
72
+
73
+ if task_selector == "Stable Diffusion with ControlNet Inpainting Pipeline":
74
+ from inpaint_sd_controlnet_pipe import inpaint_func_pipe_gradio
75
+ return inpaint_func_pipe_gradio(input_image, coord_input, text_input_inpaint_pipe, np_inpaint, steps_inpaint)
76
+
77
+ if task_selector == "Portrait Mode - Depth Anything":
78
+ from blur_image import portrait_gradio
79
+ return portrait_gradio(input_image, blur, sharpen)
80
+
81
+ if task_selector == "Outpainting - Stable Diffusion":
82
+ from outpaint_sd import outpaint_sd_gradio
83
+ return outpaint_sd_gradio(input_image, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint)
84
+
85
+ if task_selector == "Outpainting - Stable Diffusion XL":
86
+ from outpaint_sdxl import outpaint_sdxl_gradio
87
+ return outpaint_sdxl_gradio(input_image, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint)
88
+
89
+ if task_selector == "Background Replacement - Stable Diffusion":
90
+ from background_replace_sd import background_replace_sd_gradio
91
+ return background_replace_sd_gradio(input_image, prompt_background , steps_br)
92
+
93
+ if task_selector == "Background Replacement - Stable Diffusion XL":
94
+ from background_replace_sdxl import background_replace_sdxl_gradio
95
+ return background_replace_sdxl_gradio(input_image, prompt_background , steps_br)
96
+
97
+ if task_selector in ["Stable Diffusion v1.5 Txt2Img", "Stable Diffusion XL Txt2Img", "Kandinsky v2.2 Txt2Img"]:
98
+ from txt2img_generation import txt2img_gradio
99
+ return txt2img_gradio(input_image, task_selector, prompt_txt2img, np_txt2img, gs_txt2img, steps_txt2img)
100
+
101
+ if task_selector == "Eraser - LaMa":
102
+ from eraser_lama import eraser_lama_gradio
103
+ return eraser_lama_gradio(input_image, mask_image)
104
+
105
+ selected_points = []
106
+
107
+ def input_handler(evt: gr.SelectData, input_image):
108
+ global selected_points
109
+ coords = evt.index
110
+ x, y = coords[0], coords[1]
111
+ selected_points.append([x, y])
112
+ coord_string = '; '.join([f"{pt[0]},{pt[1]}" for pt in selected_points])
113
+
114
+ image_with_points = input_image.copy()
115
+ draw = ImageDraw.Draw(image_with_points)
116
+ for point in selected_points:
117
+ draw.ellipse((point[0] - 2, point[1] - 2, point[0] + 2, point[1] + 2), fill="red", outline="red")
118
+
119
+ return coord_string, image_with_points
120
+
121
+ def reset_selected_points(input_image):
122
+ global selected_points
123
+ selected_points = []
124
+ print("Selected points have been reset.")
125
+ return "", input_image
126
+
127
+ def reload_image(original_image_path):
128
+ original_image = original_image_path
129
+ return original_image
130
+
131
+ def update_task_selector(task_selector, task):
132
+ return task
133
+
134
+ def reload_image_with_output(output_image):
135
+ return output_image
136
+
137
+ def reload_mask(output_image):
138
+ return output_image
139
+
140
+ title = "# AFM Image-Editing App"
141
+
142
+ if __name__ == "__main__":
143
+ block = gr.Blocks(theme='shivi/calm_seafoam')
144
+
145
+ with block:
146
+ gr.Markdown(title)
147
+ gr.Markdown(
148
+ """
149
+ Welcome to the AFM Image-Editing App!
150
+ First, upload an input image or generate it via Txt2Img below.
151
+ Then, choose the desired task by navigating the tabs.
152
+ Finally, choose the model on the Dropdown within each tab and click on 'Generate'! Enjoy the App!
153
+ """)
154
+
155
+ original_image_path = "inputs/demo/milton.png" # Select input image path here
156
+ # original_image_path = "outputs/txt2img/generated_input.png" # for txt2img generated input image
157
+ input_mask_path = "inputs/gradio_masks/jessi_mask.png" # Optional, make sure it matches the input image
158
+ original_image = Image.open(original_image_path)
159
+
160
+ with gr.Row():
161
+ with gr.Column():
162
+ input_image = gr.Image(label="Input Image", sources='upload', type="pil", value=original_image_path, interactive=True)
163
+ with gr.Column():
164
+ output_image = gr.Image(label="Generated Image", type="pil")
165
+
166
+ with gr.Row():
167
+ generate_button = gr.Button("Generate!")
168
+
169
+ with gr.Row():
170
+ with gr.Column():
171
+
172
+ gr.Markdown("Type image coordinates manually or click on the image directly:")
173
+ coord_input = gr.Textbox(label="Pixel Coordinates (x,y), Format x1,y1; x2,y2 ...", value="")
174
+ reset_button = gr.Button("Reset coordinates")
175
+ reload_image_button = gr.Button("Clear Image")
176
+ reload_output_button = gr.Button("Load Output")
177
+ task_selector = gr.State(value="")
178
+
179
+ with gr.Accordion("Txt2Img Generation (Optional)", open=False):
180
+ tab_task_selector_11 = gr.Dropdown(["Stable Diffusion v1.5 Txt2Img",
181
+ "Stable Diffusion XL Txt2Img",
182
+ "Kandinsky v2.2 Txt2Img"], label="Select Model")
183
+ gr.Markdown("""
184
+ ### Instructions
185
+ Use this feature if you wish to generate your own input image.
186
+ After generation, simply uncomment the original_image_path line on the gradio script and relaunch the app!
187
+ Required Inputs: Text Prompt, str_res, gs_res, np_res, steps_res
188
+ Example prompt: "Photorealistic Gotham City night skyline, rain pouring down, dark clouds with streaks of lightning."
189
+ Example negative prompt: "poor details, poor quality, blurry, deformed, extra limbs"
190
+ """)
191
+ prompt_txt2img = gr.Textbox(label="Text Prompt: ", value="Photorealistic Gotham City night skyline, Batman standing on top of skyscraper, close shot, unreal engine, cinematic, rain pouring down, dark clouds with streaks of lightning")
192
+ np_txt2img = gr.Textbox(label="Negative Prompt", value="poor details, poor quality, blurry, deformed, extra limbs")
193
+ gs_txt2img = gr.Slider(minimum=0.0, maximum=50.0, label="Guidance Scale", value=7.5)
194
+ steps_txt2img = gr.Slider(minimum=5, maximum=200, label="Number of inference steps", value=30, step=1)
195
+
196
+ with gr.Accordion("Mask Input Tasks (Optional)", open=False):
197
+ gr.Markdown("""
198
+ Here is the mask uploaded directly from the gradio script, if you wish to change it,
199
+ use the Mask Generation Preview Tab and click the 'Load Preview Mask' button.
200
+ """)
201
+ mask_image = gr.Image(label="Input Mask (Optional)", sources='upload', type="pil", value=input_mask_path)
202
+
203
+ with gr.Tab("Inpainting - Object Replacement"):
204
+ tab_task_selector_2 = gr.Dropdown(["Stable Diffusion with ControlNet Inpainting",
205
+ "Stable Diffusion v1.5 Inpainting",
206
+ "Stable Diffusion XL Inpainting",
207
+ "Kandinsky v2.2 Inpainting"],
208
+ label="Select Model")
209
+ gr.Markdown("""
210
+ ### Instructions
211
+ All models in this section work with the given uploaded input mask.
212
+ Required Inputs: Input Mask (Upload) , Text Prompt - Object to replace masked area on given input mask below.
213
+ Input in the text box below the desired object to be inpainted in place of the mask input below.
214
+ Example prompt: "astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality"
215
+ """)
216
+ text_input_x = gr.Textbox(label="Text Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
217
+ steps_inp = gr.Slider(minimum=5, maximum=200, label="Number of inference steps: ", value=50, step=1)
218
+
219
+ with gr.Tab("Object Removal"):
220
+ tab_task_selector_3 = gr.Dropdown(["Object Removal LDM", "Eraser - LaMa"], label="Select Model")
221
+ gr.Markdown("""
222
+ ### Instructions
223
+ - **Object Removal LDM**:
224
+ Required inputs: Input image, Input Mask (Upload or from Preview), DDIM Steps
225
+ Given the uploaded mask below, simply adjust the slider below according to the desired number of iterations.
226
+ - **Eraser - LaMa**:
227
+ Required inputs: Input image, Input Mask (Upload or from Preview)
228
+ Please note, due to compability issues with the LaMa model and our gradio app, the output visualiztion will not
229
+ work in the app, but your output will be saved to: code/outputs/untracked/eraser-lama.
230
+ """)
231
+ ddim_steps = gr.Slider(minimum=5, maximum=250, label="Number of DDIM sampling steps for object removal LDM", value=150, step=1)
232
+
233
+ with gr.Column():
234
+
235
+ with gr.Tab("Mask Generation Preview"):
236
+ tab_task_selector_1 = gr.Dropdown(["SAM", "GroundedSAM"], label="Select Model")
237
+ reload_mask_button = gr.Button("Load Preview Mask")
238
+ gr.Markdown("""
239
+ ### Instructions
240
+ - **SAM**:
241
+ Required inputs: Input Image, Pixel Coordinates, (Optional) Dilation
242
+ Type image coordinates manually or click on the image directly. Finally, simply click on the 'Generate' button.
243
+ """)
244
+ dilation_bool = gr.Dropdown(["Yes", "No"], label="Use dilation (recommended for inpainting)")
245
+ dilation_value = gr.Slider(minimum=0, maximum=50, label="Dilation value (recommended: 10) ", value=10, step = 1)
246
+ gr.Markdown("""
247
+ - **GroundedSAM (GroundingDINO + SAM)**:
248
+ Required Inputs: Text Prompt [object(s) to be detected], (Optional) Dilation
249
+ Input in the text box below the object(s) in the input image for which the masks are to be generated.
250
+ """)
251
+ text_input = gr.Textbox(label="Text Prompt: ", value="dog")
252
+
253
+ with gr.Tab("Restyling"):
254
+ tab_task_selector_4 = gr.Dropdown(["Restyling - Stable Diffusion v1.5",
255
+ "Restyling - Stable Diffusion XL",
256
+ "Restyling - Kandinsky v2.2"], label="Select Model")
257
+ gr.Markdown("""
258
+ ### Instructions
259
+ Required Inputs: Input Image, Text Prompt, str_res, gs_res, np_res, steps_res
260
+ Example Text Prompt: "Photorealistic Gotham City night skyline, rain pouring down, dark clouds with streaks of lightning."
261
+ Example Negative Prompt: "poor details, poor quality, blurry, deformed, extra limbs"
262
+ """)
263
+ text_input_restyling = gr.Textbox(label="Text Prompt: ", value="Futuristic night city from Cyberpunk 2077, rainy night, close shot, 35 mm, realism, octane render, 8 k, exploration, cinematic, pixbay, modernist, realistic, unreal engine, hyper detailed, photorealistic, maximum detail, volumetric light, moody cinematic epic concept art, vivid")
264
+ str_res = gr.Slider(minimum=0.1, maximum=1.0, label="Strength: ", value=0.75, step=0.01)
265
+ gs_res = gr.Slider(minimum=0.0, maximum=50.0, label="Guidance Scale: ", value=7.5, step=0.1)
266
+ np_res = gr.Textbox(label="Negative Prompt: ", value="poor details, poor quality, blurry, deformed, extra limbs")
267
+ steps_res = gr.Slider(minimum=5, maximum=150, label="Number of inference steps: ", value=30, step=1)
268
+
269
+ with gr.Tab("Superresolution"):
270
+ tab_task_selector_5 = gr.Dropdown(["Superresolution - LDM x4 OpenImages",
271
+ "Superresolution - Stability AI x4 Upscaler"], label="Select Model")
272
+ gr.Markdown("""
273
+ ### Instructions
274
+ Required Inputs: Input Image, Number of Inference Steps
275
+ Select model on the Dropdown menu, number of inference steps, and click the 'Generate' button to get your new image.
276
+ """)
277
+ steps_super = gr.Slider(minimum=5, maximum=150, label="Number of inference steps: ", value=30, step=1)
278
+
279
+ with gr.Tab("Pipeline: Inpainting - Object Replacement"):
280
+ tab_task_selector_6 = gr.Dropdown(["GroundedSAM Inpainting",
281
+ "Stable Diffusion with ControlNet Inpainting Pipeline",
282
+ "Stable Diffusion v1.5 Inpainting Pipeline",
283
+ "Stable Diffusion XL Inpainting Pipeline",
284
+ "Kandinsky v2.2 Inpainting Pipeline"], label="Select Model")
285
+ gr.Markdown("""
286
+ - **GroundedSAM Inpainting (GroundingDINO + SAM + Stable Diffusion)**:
287
+ Required Inputs: Input Image, Detection Prompt , Inpainting Prompt
288
+ Input in the text box below the object(s) in the input image for which the masks are to be generated.
289
+ Example detection prompt: "dog"
290
+ Example inpaint prompt: "white tiger, photorealistic, detailed, high quality"
291
+ """)
292
+ text_input_gsam = gr.Textbox(label="Detection Prompt: ", value="dog")
293
+ inpaint_input_gsam = gr.Textbox(label="Inpainting Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
294
+ gr.Markdown("""
295
+ - **Kandinsky v2.2 / Stable Diffusion v1.5 / SDXL / SD + ControlNet**:
296
+ Required Inputs: Input Image, Pixel Coodinates , Inpainting Prompt
297
+ Input in the text box below the object(s) in the input image for which the masks are to be generated.
298
+ Example Text Prompt: "white tiger, photorealistic, detailed, high quality"
299
+ Example Negative Prompt: "poor details, poor quality, blurry, deformed, extra limbs"
300
+ """)
301
+ text_input_inpaint_pipe = gr.Textbox(label="Text Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
302
+ np_inpaint = gr.Textbox(label="Negative Prompt: ", value="poor details, poor quality, blurry, deformed, extra limbs")
303
+ steps_inpaint = gr.Slider(minimum=5, maximum=200, label="Number of inference steps: ", value=150, step=1)
304
+
305
+ with gr.Tab("Pipeline - Object Removal"):
306
+ tab_task_selector_7 = gr.Dropdown(["LDM Removal Pipeline", " "], label="Select Model")
307
+ gr.Markdown("""
308
+ ### Instructions
309
+ - **LDM Removal Pipeline**:
310
+ Required inputs: Input Image, Pixel Coodinates, DDIM Steps
311
+ If you wish to view the mask before the fnal output, go to the 'Mask Generation Preview' Tab.
312
+ Type the image coordinates manually in the box under the image or click on the image directly.
313
+ For a more detailed mask of a specific object or part of it, select multiple points.
314
+ Finally, choose number of DDIM steps simply click on the 'Generate' button:
315
+ """)
316
+ ddim_steps_pipe = gr.Slider(minimum=5, maximum=250, label="Number of DDIM sampling steps for object removal", value=150, step=1)
317
+
318
+ with gr.Tab("Background Blurring"):
319
+ tab_task_selector_8 = gr.Dropdown(["Portrait Mode - Depth Anything"], label='Select Model')
320
+ gr.Markdown("""
321
+ ### Instructions
322
+ - **Portrait Mode - Depth Anything**:
323
+ Required inputs: Input Image, box blur, sharpen
324
+ Recommended blur values range: 2-25
325
+ Recommended sharpen values range: 0-5
326
+ Adjust the required inputs with the siders below:
327
+ """)
328
+ blur = gr.Slider(minimum=0, maximum=50, label="Box Blur value", value=5, step=1)
329
+ sharpen = gr.Slider(minimum=0, maximum=7, label="Sharpen Parameter", value=0, step=1)
330
+
331
+ with gr.Tab("Outpainting"):
332
+ tab_task_selector_9 = gr.Dropdown(["Outpainting - Stable Diffusion", "Outpainting - Stable Diffusion XL"], label='Select Model')
333
+ gr.Markdown("""
334
+ ### Instructions
335
+ - **Outpainting - Stable Diffusion**:
336
+ Required inputs: Input Image, Text Prompt, extend left/right/up/down, steps
337
+ Choose how much and which direction you want to extend /outpaint your image and specify a text prompt.
338
+ Example prompt: "open plan, kitchen and living room, black umbrella on the floor, modular furniture with cotton textiles, wooden floor, high ceiling, large steel windows viewing a city"
339
+ """)
340
+ prompt_outpaint = gr.Textbox(label="Text Prompt: ", value="open plan, kitchen and living room, black umbrella on the floor, modular furniture with cotton textiles, wooden floor, high ceiling, large steel windows viewing a city")
341
+ e_l = gr.Slider(minimum=0, maximum=1000, label="Extend Left", value=200, step=1)
342
+ e_r = gr.Slider(minimum=0, maximum=1000, label="Extend Right", value=200, step=1)
343
+ e_u = gr.Slider(minimum=0, maximum=1000, label="Extend Up", value=200, step=1)
344
+ e_d = gr.Slider(minimum=0, maximum=1000, label="Extend Down", value=200, step=1)
345
+ steps_outpaint = gr.Slider(minimum=0, maximum=200, label="Number of Steps", value=50, step=1)
346
+
347
+ with gr.Tab("Background Replacement"):
348
+ tab_task_selector_10 = gr.Dropdown(["Background Replacement - Stable Diffusion", "Background Replacement - Stable Diffusion XL"], label='Select Model')
349
+ gr.Markdown("""
350
+ ### Instructions
351
+ - **Background Replacement - Stable Diffusion**:
352
+ Required inputs: Input Image, Text Prompt, steps
353
+ Specify the new background in the text box below.
354
+ Example prompt: "dog sitting on the beach, sunny day, blue sky"
355
+ """)
356
+ prompt_background = gr.Textbox(label="Text Prompt: ", value="dog sitting on the beach, sunny day, blue sky, cinematic, pixbay, modernist, realistic, unreal engine, hyper detailed, photorealistic, maximum detail, volumetric light, moody cinematic epic concept art, vivid")
357
+ steps_br = gr.Slider(minimum=0, maximum=200, label="Number of Steps", value=30, step=1)
358
+
359
+
360
+
361
+ input_image.select(input_handler, inputs=[input_image], outputs=[coord_input, input_image])
362
+
363
+ generate_button.click(
364
+ fn=run_afm_app,
365
+ inputs=[task_selector, input_image, mask_image, text_input, text_input_x, text_input_gsam, coord_input, ddim_steps, ddim_steps_pipe,
366
+ inpaint_input_gsam, text_input_inpaint_pipe, text_input_restyling, blur, sharpen, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint,
367
+ prompt_background, steps_br, str_res, gs_res, np_res, steps_res, np_inpaint, steps_inpaint, prompt_txt2img, np_txt2img, gs_txt2img,
368
+ steps_txt2img, steps_super, dilation_bool, dilation_value, steps_inp],
369
+ outputs=output_image
370
+ )
371
+
372
+ reset_button.click(
373
+ fn=reset_selected_points,
374
+ inputs=[input_image],
375
+ outputs=[coord_input, input_image]
376
+ )
377
+
378
+ reload_image_button.click(
379
+ fn=reload_image,
380
+ inputs=[gr.State(original_image_path)],
381
+ outputs=[input_image]
382
+ )
383
+
384
+ reload_output_button.click(
385
+ fn=reload_image_with_output,
386
+ inputs=[output_image],
387
+ outputs=[input_image]
388
+ )
389
+
390
+ reload_mask_button.click(
391
+ fn=reload_mask,
392
+ inputs=[output_image],
393
+ outputs=[mask_image]
394
+ )
395
+
396
+ tab_task_selector_1.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_1], outputs=[task_selector])
397
+ tab_task_selector_2.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_2], outputs=[task_selector])
398
+ tab_task_selector_3.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_3], outputs=[task_selector])
399
+ tab_task_selector_4.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_4], outputs=[task_selector])
400
+ tab_task_selector_5.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_5], outputs=[task_selector])
401
+ tab_task_selector_6.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_6], outputs=[task_selector])
402
+ tab_task_selector_7.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_7], outputs=[task_selector])
403
+ tab_task_selector_8.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_8], outputs=[task_selector])
404
+ tab_task_selector_9.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_9], outputs=[task_selector])
405
+ tab_task_selector_10.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_10], outputs=[task_selector])
406
+ tab_task_selector_11.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_11], outputs=[task_selector])
407
+
408
+ block.launch(share=True)
app.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image, ImageDraw
3
+
4
+
5
+ def run_afm_app(task_selector, input_image, mask_image, text_input, text_input_x, text_input_gsam, coord_input,
6
+ ddim_steps, ddim_steps_pipe, inpaint_input_gsam, text_input_inpaint_pipe, text_input_restyling,
7
+ blur, sharpen, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint, prompt_background , steps_br,
8
+ str_res, gs_res, np_res, steps_res, np_inpaint, steps_inpaint, prompt_txt2img, np_txt2img, gs_txt2img,
9
+ steps_txt2img, steps_super, dilation_bool, dilation_value, steps_inp):
10
+
11
+ print(f"Task selected: {task_selector}")
12
+
13
+ if task_selector == "SAM":
14
+ from mask_sam import sam_gradio
15
+ return sam_gradio(input_image, coord_input, dilation_bool, dilation_value)
16
+
17
+ if task_selector == "GroundedSAM":
18
+ from mask_groundedsam import groundedsam_mask_gradio
19
+ return groundedsam_mask_gradio(input_image, text_input, dilation_bool, dilation_value)
20
+
21
+ if task_selector == "Stable Diffusion with ControlNet Inpainting":
22
+ from inpaint_sd_controlnet import controlnet_inpaint_gradio
23
+ return controlnet_inpaint_gradio(input_image, mask_image, text_input_x)
24
+
25
+ if task_selector == "Stable Diffusion v1.5 Inpainting":
26
+ from inpaint_sd import inpaint_sd_gradio
27
+ return inpaint_sd_gradio(input_image, mask_image, text_input_x, steps_inp)
28
+
29
+ if task_selector == "Stable Diffusion XL Inpainting":
30
+ from inpaint_sdxl import inpaint_sdxl_gradio
31
+ return inpaint_sdxl_gradio(input_image, mask_image, text_input_x, steps_inp)
32
+
33
+ if task_selector == "Kandinsky v2.2 Inpainting":
34
+ from inpaint_kandinsky import inpaint_kandinsky_gradio
35
+ return inpaint_kandinsky_gradio(input_image, mask_image, text_input_x, steps_inp)
36
+
37
+ if task_selector == "GroundedSAM Inpainting":
38
+ from inpaint_groundedsam import groundedsam_inpaint_gradio
39
+ return groundedsam_inpaint_gradio(input_image, text_input_gsam, inpaint_input_gsam)
40
+
41
+ if task_selector == "Object Removal LDM":
42
+ from eraser_ldm import ldm_removal_gradio
43
+ return ldm_removal_gradio(input_image, mask_image, ddim_steps)
44
+
45
+ if task_selector == "Restyling - Stable Diffusion v1.5":
46
+ from restyling_sd import restyling_gradio
47
+ return restyling_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
48
+
49
+ if task_selector == "Restyling - Stable Diffusion XL":
50
+ from restyling_sdxl import restyling_sdxl_gradio
51
+ return restyling_sdxl_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
52
+
53
+ if task_selector == "Restyling - Kandinsky v2.2":
54
+ from restyling_kandinsky import restyling_kandinsky_gradio
55
+ return restyling_kandinsky_gradio(input_image, text_input_restyling, str_res, gs_res, np_res, steps_res)
56
+
57
+ if task_selector == "Superresolution - LDM x4 OpenImages":
58
+ from superres_ldm import superres_gradio
59
+ return superres_gradio(input_image, steps_super)
60
+
61
+ if task_selector == "Superresolution - Stability AI x4 Upscaler":
62
+ from superres_upscaler import superres_upscaler_gradio
63
+ return superres_upscaler_gradio(input_image, steps_super)
64
+
65
+ if task_selector == "LDM Removal Pipeline":
66
+ from eraser_ldm_pipe import ldm_removal_pipe_gradio
67
+ return ldm_removal_pipe_gradio(input_image, coord_input, ddim_steps_pipe)
68
+
69
+ if task_selector in ["Stable Diffusion v1.5 Inpainting Pipeline", "Stable Diffusion XL Inpainting Pipeline", "Kandinsky v2.2 Inpainting Pipeline"]:
70
+ from inpaint_pipe import inpaint_pipe_gradio
71
+ return inpaint_pipe_gradio(task_selector, input_image, coord_input, text_input_inpaint_pipe, np_inpaint, steps_inpaint)
72
+
73
+ if task_selector == "Stable Diffusion with ControlNet Inpainting Pipeline":
74
+ from inpaint_sd_controlnet_pipe import inpaint_func_pipe_gradio
75
+ return inpaint_func_pipe_gradio(input_image, coord_input, text_input_inpaint_pipe, np_inpaint, steps_inpaint)
76
+
77
+ if task_selector == "Portrait Mode - Depth Anything":
78
+ from blur_image import portrait_gradio
79
+ return portrait_gradio(input_image, blur, sharpen)
80
+
81
+ if task_selector == "Outpainting - Stable Diffusion":
82
+ from outpaint_sd import outpaint_sd_gradio
83
+ return outpaint_sd_gradio(input_image, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint)
84
+
85
+ if task_selector == "Outpainting - Stable Diffusion XL":
86
+ from outpaint_sdxl import outpaint_sdxl_gradio
87
+ return outpaint_sdxl_gradio(input_image, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint)
88
+
89
+ if task_selector == "Background Replacement - Stable Diffusion":
90
+ from background_replace_sd import background_replace_sd_gradio
91
+ return background_replace_sd_gradio(input_image, prompt_background , steps_br)
92
+
93
+ if task_selector == "Background Replacement - Stable Diffusion XL":
94
+ from background_replace_sdxl import background_replace_sdxl_gradio
95
+ return background_replace_sdxl_gradio(input_image, prompt_background , steps_br)
96
+
97
+ if task_selector in ["Stable Diffusion v1.5 Txt2Img", "Stable Diffusion XL Txt2Img", "Kandinsky v2.2 Txt2Img"]:
98
+ from txt2img_generation import txt2img_gradio
99
+ return txt2img_gradio(input_image, task_selector, prompt_txt2img, np_txt2img, gs_txt2img, steps_txt2img)
100
+
101
+ if task_selector == "Eraser - LaMa":
102
+ from eraser_lama import eraser_lama_gradio
103
+ return eraser_lama_gradio(input_image, mask_image)
104
+
105
+ selected_points = []
106
+
107
+ def input_handler(evt: gr.SelectData, input_image):
108
+ global selected_points
109
+ coords = evt.index
110
+ x, y = coords[0], coords[1]
111
+ selected_points.append([x, y])
112
+ coord_string = '; '.join([f"{pt[0]},{pt[1]}" for pt in selected_points])
113
+
114
+ image_with_points = input_image.copy()
115
+ draw = ImageDraw.Draw(image_with_points)
116
+ for point in selected_points:
117
+ draw.ellipse((point[0] - 2, point[1] - 2, point[0] + 2, point[1] + 2), fill="red", outline="red")
118
+
119
+ return coord_string, image_with_points
120
+
121
+ def reset_selected_points(input_image):
122
+ global selected_points
123
+ selected_points = []
124
+ print("Selected points have been reset.")
125
+ return "", input_image
126
+
127
+ def reload_image(original_image_path):
128
+ original_image = original_image_path
129
+ return original_image
130
+
131
+ def update_task_selector(task_selector, task):
132
+ return task
133
+
134
+ def reload_image_with_output(output_image):
135
+ return output_image
136
+
137
+ def reload_mask(output_image):
138
+ return output_image
139
+
140
+ title = "# AFM Image-Editing App"
141
+
142
+ if __name__ == "__main__":
143
+ block = gr.Blocks(theme='shivi/calm_seafoam')
144
+
145
+ with block:
146
+ gr.Markdown(title)
147
+ gr.Markdown(
148
+ """
149
+ WARNING: To run this app on GPU, please follow the instructions on the repo: https://github.com/matt576/image-editing
150
+ Welcome to the AFM Image-Editing App!
151
+ First, upload an input image or generate it via Txt2Img below.
152
+ Then, choose the desired task by navigating the tabs.
153
+ Finally, choose the model on the Dropdown within each tab and click on 'Generate'! Enjoy the App!
154
+ """)
155
+
156
+ original_image_path = "scott.png" # Select input image path here
157
+ # original_image_path = "outputs/txt2img/generated_input.png" # for txt2img generated input image
158
+ input_mask_path = "scott.png" # Optional, make sure it matches the input image
159
+ original_image = Image.open(original_image_path)
160
+
161
+ with gr.Row():
162
+ with gr.Column():
163
+ input_image = gr.Image(label="Input Image", sources='upload', type="pil", value=original_image_path, interactive=True)
164
+ with gr.Column():
165
+ output_image = gr.Image(label="Generated Image", type="pil")
166
+
167
+ with gr.Row():
168
+ generate_button = gr.Button("Generate!")
169
+
170
+ with gr.Row():
171
+ with gr.Column():
172
+
173
+ gr.Markdown("Type image coordinates manually or click on the image directly:")
174
+ coord_input = gr.Textbox(label="Pixel Coordinates (x,y), Format x1,y1; x2,y2 ...", value="")
175
+ reset_button = gr.Button("Reset coordinates")
176
+ reload_image_button = gr.Button("Clear Image")
177
+ reload_output_button = gr.Button("Load Output")
178
+ task_selector = gr.State(value="")
179
+
180
+ with gr.Accordion("Txt2Img Generation (Optional)", open=False):
181
+ tab_task_selector_11 = gr.Dropdown(["Stable Diffusion v1.5 Txt2Img",
182
+ "Stable Diffusion XL Txt2Img",
183
+ "Kandinsky v2.2 Txt2Img"], label="Select Model")
184
+ gr.Markdown("""
185
+ ### Instructions
186
+ Use this feature if you wish to generate your own input image.
187
+ After generation, simply uncomment the original_image_path line on the gradio script and relaunch the app!
188
+ Required Inputs: Text Prompt, str_res, gs_res, np_res, steps_res
189
+ Example prompt: "Photorealistic Gotham City night skyline, rain pouring down, dark clouds with streaks of lightning."
190
+ Example negative prompt: "poor details, poor quality, blurry, deformed, extra limbs"
191
+ """)
192
+ prompt_txt2img = gr.Textbox(label="Text Prompt: ", value="Photorealistic Gotham City night skyline, Batman standing on top of skyscraper, close shot, unreal engine, cinematic, rain pouring down, dark clouds with streaks of lightning")
193
+ np_txt2img = gr.Textbox(label="Negative Prompt", value="poor details, poor quality, blurry, deformed, extra limbs")
194
+ gs_txt2img = gr.Slider(minimum=0.0, maximum=50.0, label="Guidance Scale", value=7.5)
195
+ steps_txt2img = gr.Slider(minimum=5, maximum=200, label="Number of inference steps", value=30, step=1)
196
+
197
+ with gr.Accordion("Mask Input Tasks (Optional)", open=False):
198
+ gr.Markdown("""
199
+ Here is the mask uploaded directly from the gradio script, if you wish to change it,
200
+ use the Mask Generation Preview Tab and click the 'Load Preview Mask' button.
201
+ """)
202
+ mask_image = gr.Image(label="Input Mask (Optional)", sources='upload', type="pil", value=input_mask_path)
203
+
204
+ with gr.Tab("Inpainting - Object Replacement"):
205
+ tab_task_selector_2 = gr.Dropdown(["Stable Diffusion with ControlNet Inpainting",
206
+ "Stable Diffusion v1.5 Inpainting",
207
+ "Stable Diffusion XL Inpainting",
208
+ "Kandinsky v2.2 Inpainting"],
209
+ label="Select Model")
210
+ gr.Markdown("""
211
+ ### Instructions
212
+ All models in this section work with the given uploaded input mask.
213
+ Required Inputs: Input Mask (Upload) , Text Prompt - Object to replace masked area on given input mask below.
214
+ Input in the text box below the desired object to be inpainted in place of the mask input below.
215
+ Example prompt: "astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality"
216
+ """)
217
+ text_input_x = gr.Textbox(label="Text Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
218
+ steps_inp = gr.Slider(minimum=5, maximum=200, label="Number of inference steps: ", value=50, step=1)
219
+
220
+ with gr.Tab("Object Removal"):
221
+ tab_task_selector_3 = gr.Dropdown(["Object Removal LDM", "Eraser - LaMa"], label="Select Model")
222
+ gr.Markdown("""
223
+ ### Instructions
224
+ - **Object Removal LDM**:
225
+ Required inputs: Input image, Input Mask (Upload or from Preview), DDIM Steps
226
+ Given the uploaded mask below, simply adjust the slider below according to the desired number of iterations.
227
+ - **Eraser - LaMa**:
228
+ Required inputs: Input image, Input Mask (Upload or from Preview)
229
+ Please note, due to compability issues with the LaMa model and our gradio app, the output visualiztion will not
230
+ work in the app, but your output will be saved to: code/outputs/untracked/eraser-lama.
231
+ """)
232
+ ddim_steps = gr.Slider(minimum=5, maximum=250, label="Number of DDIM sampling steps for object removal LDM", value=150, step=1)
233
+
234
+ with gr.Column():
235
+
236
+ with gr.Tab("Mask Generation Preview"):
237
+ tab_task_selector_1 = gr.Dropdown(["SAM", "GroundedSAM"], label="Select Model")
238
+ reload_mask_button = gr.Button("Load Preview Mask")
239
+ gr.Markdown("""
240
+ ### Instructions
241
+ - **SAM**:
242
+ Required inputs: Input Image, Pixel Coordinates, (Optional) Dilation
243
+ Type image coordinates manually or click on the image directly. Finally, simply click on the 'Generate' button.
244
+ """)
245
+ dilation_bool = gr.Dropdown(["Yes", "No"], label="Use dilation (recommended for inpainting)")
246
+ dilation_value = gr.Slider(minimum=0, maximum=50, label="Dilation value (recommended: 10) ", value=10, step = 1)
247
+ gr.Markdown("""
248
+ - **GroundedSAM (GroundingDINO + SAM)**:
249
+ Required Inputs: Text Prompt [object(s) to be detected], (Optional) Dilation
250
+ Input in the text box below the object(s) in the input image for which the masks are to be generated.
251
+ """)
252
+ text_input = gr.Textbox(label="Text Prompt: ", value="dog")
253
+
254
+ with gr.Tab("Restyling"):
255
+ tab_task_selector_4 = gr.Dropdown(["Restyling - Stable Diffusion v1.5",
256
+ "Restyling - Stable Diffusion XL",
257
+ "Restyling - Kandinsky v2.2"], label="Select Model")
258
+ gr.Markdown("""
259
+ ### Instructions
260
+ Required Inputs: Input Image, Text Prompt, str_res, gs_res, np_res, steps_res
261
+ Example Text Prompt: "Photorealistic Gotham City night skyline, rain pouring down, dark clouds with streaks of lightning."
262
+ Example Negative Prompt: "poor details, poor quality, blurry, deformed, extra limbs"
263
+ """)
264
+ text_input_restyling = gr.Textbox(label="Text Prompt: ", value="Futuristic night city from Cyberpunk 2077, rainy night, close shot, 35 mm, realism, octane render, 8 k, exploration, cinematic, pixbay, modernist, realistic, unreal engine, hyper detailed, photorealistic, maximum detail, volumetric light, moody cinematic epic concept art, vivid")
265
+ str_res = gr.Slider(minimum=0.1, maximum=1.0, label="Strength: ", value=0.75, step=0.01)
266
+ gs_res = gr.Slider(minimum=0.0, maximum=50.0, label="Guidance Scale: ", value=7.5, step=0.1)
267
+ np_res = gr.Textbox(label="Negative Prompt: ", value="poor details, poor quality, blurry, deformed, extra limbs")
268
+ steps_res = gr.Slider(minimum=5, maximum=150, label="Number of inference steps: ", value=30, step=1)
269
+
270
+ with gr.Tab("Superresolution"):
271
+ tab_task_selector_5 = gr.Dropdown(["Superresolution - LDM x4 OpenImages",
272
+ "Superresolution - Stability AI x4 Upscaler"], label="Select Model")
273
+ gr.Markdown("""
274
+ ### Instructions
275
+ Required Inputs: Input Image, Number of Inference Steps
276
+ Select model on the Dropdown menu, number of inference steps, and click the 'Generate' button to get your new image.
277
+ """)
278
+ steps_super = gr.Slider(minimum=5, maximum=150, label="Number of inference steps: ", value=30, step=1)
279
+
280
+ with gr.Tab("Pipeline: Inpainting - Object Replacement"):
281
+ tab_task_selector_6 = gr.Dropdown(["GroundedSAM Inpainting",
282
+ "Stable Diffusion with ControlNet Inpainting Pipeline",
283
+ "Stable Diffusion v1.5 Inpainting Pipeline",
284
+ "Stable Diffusion XL Inpainting Pipeline",
285
+ "Kandinsky v2.2 Inpainting Pipeline"], label="Select Model")
286
+ gr.Markdown("""
287
+ - **GroundedSAM Inpainting (GroundingDINO + SAM + Stable Diffusion)**:
288
+ Required Inputs: Input Image, Detection Prompt , Inpainting Prompt
289
+ Input in the text box below the object(s) in the input image for which the masks are to be generated.
290
+ Example detection prompt: "dog"
291
+ Example inpaint prompt: "white tiger, photorealistic, detailed, high quality"
292
+ """)
293
+ text_input_gsam = gr.Textbox(label="Detection Prompt: ", value="dog")
294
+ inpaint_input_gsam = gr.Textbox(label="Inpainting Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
295
+ gr.Markdown("""
296
+ - **Kandinsky v2.2 / Stable Diffusion v1.5 / SDXL / SD + ControlNet**:
297
+ Required Inputs: Input Image, Pixel Coodinates , Inpainting Prompt
298
+ Input in the text box below the object(s) in the input image for which the masks are to be generated.
299
+ Example Text Prompt: "white tiger, photorealistic, detailed, high quality"
300
+ Example Negative Prompt: "poor details, poor quality, blurry, deformed, extra limbs"
301
+ """)
302
+ text_input_inpaint_pipe = gr.Textbox(label="Text Prompt: ", value="astronaut, white suit, 8k, extremely detailed, ornate, cinematic lighting, vivid, photorealistic, detailed, high quality")
303
+ np_inpaint = gr.Textbox(label="Negative Prompt: ", value="poor details, poor quality, blurry, deformed, extra limbs")
304
+ steps_inpaint = gr.Slider(minimum=5, maximum=200, label="Number of inference steps: ", value=150, step=1)
305
+
306
+ with gr.Tab("Pipeline - Object Removal"):
307
+ tab_task_selector_7 = gr.Dropdown(["LDM Removal Pipeline", " "], label="Select Model")
308
+ gr.Markdown("""
309
+ ### Instructions
310
+ - **LDM Removal Pipeline**:
311
+ Required inputs: Input Image, Pixel Coodinates, DDIM Steps
312
+ If you wish to view the mask before the fnal output, go to the 'Mask Generation Preview' Tab.
313
+ Type the image coordinates manually in the box under the image or click on the image directly.
314
+ For a more detailed mask of a specific object or part of it, select multiple points.
315
+ Finally, choose number of DDIM steps simply click on the 'Generate' button:
316
+ """)
317
+ ddim_steps_pipe = gr.Slider(minimum=5, maximum=250, label="Number of DDIM sampling steps for object removal", value=150, step=1)
318
+
319
+ with gr.Tab("Background Blurring"):
320
+ tab_task_selector_8 = gr.Dropdown(["Portrait Mode - Depth Anything"], label='Select Model')
321
+ gr.Markdown("""
322
+ ### Instructions
323
+ - **Portrait Mode - Depth Anything**:
324
+ Required inputs: Input Image, box blur, sharpen
325
+ Recommended blur values range: 2-25
326
+ Recommended sharpen values range: 0-5
327
+ Adjust the required inputs with the siders below:
328
+ """)
329
+ blur = gr.Slider(minimum=0, maximum=50, label="Box Blur value", value=5, step=1)
330
+ sharpen = gr.Slider(minimum=0, maximum=7, label="Sharpen Parameter", value=0, step=1)
331
+
332
+ with gr.Tab("Outpainting"):
333
+ tab_task_selector_9 = gr.Dropdown(["Outpainting - Stable Diffusion", "Outpainting - Stable Diffusion XL"], label='Select Model')
334
+ gr.Markdown("""
335
+ ### Instructions
336
+ - **Outpainting - Stable Diffusion**:
337
+ Required inputs: Input Image, Text Prompt, extend left/right/up/down, steps
338
+ Choose how much and which direction you want to extend /outpaint your image and specify a text prompt.
339
+ Example prompt: "open plan, kitchen and living room, black umbrella on the floor, modular furniture with cotton textiles, wooden floor, high ceiling, large steel windows viewing a city"
340
+ """)
341
+ prompt_outpaint = gr.Textbox(label="Text Prompt: ", value="open plan, kitchen and living room, black umbrella on the floor, modular furniture with cotton textiles, wooden floor, high ceiling, large steel windows viewing a city")
342
+ e_l = gr.Slider(minimum=0, maximum=1000, label="Extend Left", value=200, step=1)
343
+ e_r = gr.Slider(minimum=0, maximum=1000, label="Extend Right", value=200, step=1)
344
+ e_u = gr.Slider(minimum=0, maximum=1000, label="Extend Up", value=200, step=1)
345
+ e_d = gr.Slider(minimum=0, maximum=1000, label="Extend Down", value=200, step=1)
346
+ steps_outpaint = gr.Slider(minimum=0, maximum=200, label="Number of Steps", value=50, step=1)
347
+
348
+ with gr.Tab("Background Replacement"):
349
+ tab_task_selector_10 = gr.Dropdown(["Background Replacement - Stable Diffusion", "Background Replacement - Stable Diffusion XL"], label='Select Model')
350
+ gr.Markdown("""
351
+ ### Instructions
352
+ - **Background Replacement - Stable Diffusion**:
353
+ Required inputs: Input Image, Text Prompt, steps
354
+ Specify the new background in the text box below.
355
+ Example prompt: "dog sitting on the beach, sunny day, blue sky"
356
+ """)
357
+ prompt_background = gr.Textbox(label="Text Prompt: ", value="dog sitting on the beach, sunny day, blue sky, cinematic, pixbay, modernist, realistic, unreal engine, hyper detailed, photorealistic, maximum detail, volumetric light, moody cinematic epic concept art, vivid")
358
+ steps_br = gr.Slider(minimum=0, maximum=200, label="Number of Steps", value=30, step=1)
359
+
360
+
361
+
362
+ input_image.select(input_handler, inputs=[input_image], outputs=[coord_input, input_image])
363
+
364
+ generate_button.click(
365
+ fn=run_afm_app,
366
+ inputs=[task_selector, input_image, mask_image, text_input, text_input_x, text_input_gsam, coord_input, ddim_steps, ddim_steps_pipe,
367
+ inpaint_input_gsam, text_input_inpaint_pipe, text_input_restyling, blur, sharpen, prompt_outpaint, e_l, e_r, e_u, e_d, steps_outpaint,
368
+ prompt_background, steps_br, str_res, gs_res, np_res, steps_res, np_inpaint, steps_inpaint, prompt_txt2img, np_txt2img, gs_txt2img,
369
+ steps_txt2img, steps_super, dilation_bool, dilation_value, steps_inp],
370
+ outputs=output_image
371
+ )
372
+
373
+ reset_button.click(
374
+ fn=reset_selected_points,
375
+ inputs=[input_image],
376
+ outputs=[coord_input, input_image]
377
+ )
378
+
379
+ reload_image_button.click(
380
+ fn=reload_image,
381
+ inputs=[gr.State(original_image_path)],
382
+ outputs=[input_image]
383
+ )
384
+
385
+ reload_output_button.click(
386
+ fn=reload_image_with_output,
387
+ inputs=[output_image],
388
+ outputs=[input_image]
389
+ )
390
+
391
+ reload_mask_button.click(
392
+ fn=reload_mask,
393
+ inputs=[output_image],
394
+ outputs=[mask_image]
395
+ )
396
+
397
+ tab_task_selector_1.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_1], outputs=[task_selector])
398
+ tab_task_selector_2.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_2], outputs=[task_selector])
399
+ tab_task_selector_3.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_3], outputs=[task_selector])
400
+ tab_task_selector_4.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_4], outputs=[task_selector])
401
+ tab_task_selector_5.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_5], outputs=[task_selector])
402
+ tab_task_selector_6.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_6], outputs=[task_selector])
403
+ tab_task_selector_7.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_7], outputs=[task_selector])
404
+ tab_task_selector_8.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_8], outputs=[task_selector])
405
+ tab_task_selector_9.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_9], outputs=[task_selector])
406
+ tab_task_selector_10.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_10], outputs=[task_selector])
407
+ tab_task_selector_11.change(fn=update_task_selector, inputs=[task_selector, tab_task_selector_11], outputs=[task_selector])
408
+
409
+ block.launch(share=True)
scott.png ADDED