|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import chromadb |
|
dbPath="/home/af/Schreibtisch/gradio/Chroma/db" |
|
if(os.path.exists(dbPath)==False): |
|
dbPath="/home/user/app/db" |
|
print(dbPath) |
|
|
|
path=dbPath |
|
client = chromadb.PersistentClient(path=path) |
|
print(client.heartbeat()) |
|
print(client.get_version()) |
|
print(client.list_collections()) |
|
from chromadb.utils import embedding_functions |
|
default_ef = embedding_functions.DefaultEmbeddingFunction() |
|
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") |
|
|
|
print(str(client.list_collections())) |
|
|
|
global collection |
|
if("name=ChromaDB1" in str(client.list_collections())): |
|
print("ChromaDB1 found!") |
|
collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef) |
|
else: |
|
print("ChromaDB1 created!") |
|
collection = client.create_collection( |
|
"ChromaDB1", |
|
embedding_function=sentence_transformer_ef, |
|
metadata={"hnsw:space": "cosine"}) |
|
|
|
collection.add( |
|
documents=[ |
|
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Perfect for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.", |
|
"Image generating AI model stabilityai/sdxl-turbo: Perfect for image generation, e.g., illustrations, graphics, AI art, etc.", |
|
"Audio transcribing AI model openai/whisper-large-v3: Perfect for audio-transcription in different languages", |
|
"Speech synthesizing AI model coqui/XTTS-v2: Perfect for generating audio from text and for voice-cloning" |
|
], |
|
metadatas=[{"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}], |
|
ids=["ai1", "ai2", "ai3", "ai4"], |
|
) |
|
|
|
print("Database ready!") |
|
print(collection.count()) |
|
|
|
|
|
|
|
|
|
|
|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
|
|
client = InferenceClient( |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import json |
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def response( |
|
prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: temperature = 1e-2 |
|
top_p = float(top_p) |
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
addon="" |
|
results=collection.query( |
|
query_texts=[prompt], |
|
n_results=2, |
|
|
|
|
|
) |
|
dists=["<small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] |
|
sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]] |
|
results=results['documents'][0] |
|
combination = zip(results,dists,sources) |
|
combination = [' '.join(triplets) for triplets in combination] |
|
print(combination) |
|
if(len(results)>1): |
|
addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) |
|
system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete KI-Tools empfiehlt."+addon+"\n\nUser-Anliegen:" |
|
|
|
formatted_prompt = format_prompt(system+"\n"+prompt, history) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" |
|
yield output |
|
|
|
gr.ChatInterface(response, chatbot=gr.Chatbot(render_markdown=True),title="German AI-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) |
|
print("Interface up and running!") |