File size: 18,231 Bytes
09eaef4
 
41ec323
09eaef4
 
 
41ec323
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
 
 
 
 
 
09eaef4
 
41ec323
 
 
 
 
 
 
 
 
09eaef4
41ec323
09eaef4
 
41ec323
 
 
09eaef4
 
 
 
 
 
41ec323
09eaef4
41ec323
09eaef4
 
41ec323
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
2d68b9c
 
 
 
 
d423a74
2d68b9c
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
 
 
 
09eaef4
 
 
 
 
 
 
 
 
41ec323
09eaef4
 
41ec323
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
09eaef4
 
 
 
 
 
 
41ec323
 
 
 
 
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
09eaef4
41ec323
09eaef4
 
 
41ec323
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ec323
09eaef4
41ec323
 
09eaef4
 
 
 
41ec323
09eaef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#########################################################################################
# Title:  German AI-Interface to the Hugging Face Hub with advanced RAG
# Author: Andreas Fischer
# Date:   January 31st, 2023
# Last update: February 21st, 2024
##########################################################################################

#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v

# Prepare resources
#-------------------
import torch
import gc
torch.cuda.empty_cache()
gc.collect()

import os
from datetime import datetime
global filename
filename=f"./{datetime.now().strftime('%Y%m%d')}_history.json" # where to store the history as json-file
if(os.path.exists(filename)==True): os.remove(filename) 

# Chroma-DB
#-----------
import os
import chromadb
dbPath="/home/af/Schreibtisch/gradio/Chroma/db" 
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"

print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat()) 
print(client.get_version())  
print(client.list_collections()) 
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
embeddingModel = embedding_functions.InstructorEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda")

print(str(client.list_collections()))

global collection
dbName="myDB"
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName)

if("name="+dbName in str(client.list_collections())):
  print(dbName+" found!")
  collection = client.get_collection(name=dbName, embedding_function=embeddingModel )
else:
  print(dbName+" created!")
  collection = client.create_collection(
    dbName,
    embedding_function=embeddingModel,
    metadata={"hnsw:space": "cosine"})
  # txts0: Intentions
  #------------------
  txts0=[
      "Ich suche ein KI-Programm mit bestimmten Fähigkeiten.",            # 1a
      #"Ich suche kein KI-Programm mit bestimmten Fähigkeiten.",          # !1a
      "Ich habe ein KI-Programm und habe Fragen zur Benutzung.",          # !1a (besser, um 1a und 1b abzugrenzen)
      "Ich habe ein KI-Programm und habe Fragen zur Benutzung.",          # 1b
      #"Ich habe kein KI-Programm und habe keine Fragen zur Benutzung.",  # !1b
      "Ich habe eine allgemeine Frage ohne KI-Bezug."                     # !1b (greift besser bei Alltagsfragen)
    ]
  # txts1a: RAG-Infos for first intention:
  #---------------------------------------
  txts1a=[
      "Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.",
      "Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.",
      "Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages",
      "Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning",
      "Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.",
      "Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa",
      "Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results"
    ]
  # txts1b: RAG-Infos for second intention
  #----------------------------------------
  txts1b=[
    "Für Fragen zur Umsetzung von KI-Verfahren ist das KI-basierte Assistenzsystem nicht geeignet. Möglicherweise empfiehlt sich ein KI-Modell mit Internetzugriff, wie beispielsweise phind.com, oder das Kontaktieren eines Experten wie Dr. Andreas Fischer ([email protected])."
    ]
  #meta=[{"type":"0", "type2":"0","source":"AF"}]*len(txts0)+[{"type":"1a","type2":"0","source":"AF"}]*len(txts1a)+[{"type":"1b","type2":"0","source":"AF"}]*len(txts1b)
  meta = []
  for _ in range(len(txts0)):
    meta.append({"type":"0", "type2":"0","source":"AF"})
  for _ in range(len(txts1a)):
    meta.append({"type":"1a","type2":"0","source":"AF"})
  for _ in range(len(txts1b)):
    meta.append({"type":"1b","type2":"0","source":"AF"})
  
  #Change type2 for txt0-entries
  #-----------------------------
  meta[0]["type2"]="1a" # RAG mit txts1a 
  meta[1]["type2"]="!1a" # else
  meta[2]["type2"]="1b" # RAG mit txts1b
  meta[3]["type2"]="!1b" # else 
  txts=txts0+txts1a+txts1b
  collection.add(
    documents=txts,     
    ids=[str(i) for i in list(range(len(txts)))],
    metadatas=meta
  )
  
  # Add entry to episodic memory
  x=collection.get(include=[])["ids"]
  if(True): #len(x)==0):
    message="Ich bin der User."
    response="Hallo User, wie kann ich dienen?"
    x=collection.get(include=[])["ids"]
    collection.add(
      documents=[message,response], 
      metadatas=[
        {"source": "ICH", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"},
        {"source": "DU",  "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"}
      ], 
      ids=[str(len(x)+1),str(len(x)+2)] 
    )
    RAGResults=collection.query(
      query_texts=[message],
      n_results=1,
      #where={"source": "USER"}
    )
    RAGResults["metadatas"][0][0]["dialog"]

x=collection.get(include=[])["ids"]
x
collection.get() # Inspect db-entries

print("Database ready!")
print(collection.count()) 

rag0=collection.query(
  query_texts=[message],
  n_results=4,
  where={"type": "0"}
  )
x=rag0["metadatas"][0][0]["type2"]
x=[x["type2"] for x in rag0["metadatas"][0]]
x.index("1c") if "1c" in x else len(x)+1


# Get model 
#-----------

import os
import requests

modelPath="/home/af/gguf/models/discolm_german_7b_v1.Q4_0.gguf"
if(os.path.exists(modelPath)==False):
  #url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf"
  #url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
  #url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true"
  url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
  response = requests.get(url)
  with open("./model.gguf", mode="wb") as file:
    file.write(response.content)
  print("Model downloaded")  
  modelPath="./model.gguf"

print(modelPath)


# Llama-cpp-Server
#------------------

import subprocess
n="20"
if("mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...

command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
subprocess.Popen(command)
print("Server ready!")


# Gradio-GUI
#------------

def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4): #float("Inf")
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)
  template0="[INST] {system} [/INST]</s>" #<s>
  template1="[INST] {message} [/INST] "
  template2="{response}</s>"
  if("mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    template0="[INST] {system} [/INST]</s>" #<s>
    template1="[INST] {message} [/INST] "
    template2="{response}</s>"
  if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
    template0="[INST] {system} [/INST]</s>" #<s>
    template1="[INST] {message} [/INST] "
    template2="{response}</s>"
  if("openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
    template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
    template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
    template2="{response}<|end_of_turn|>"
  if("SauerkrautLM-7b-HerO" in modelPath):  #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
    template0="<|im_start|>system\n{system}<|im_end|>\n"
    template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    template2="{response}<|im_end|>\n"
  if("discolm_german_7b" in modelPath): #https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1
    template0="<|im_start|>system\n{system}<|im_end|>\n"
    template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    template2="{response}<|im_end|>\n"
  if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
    template0="{system} " #<s>
    template1="USER: {message} ASSISTANT: "
    template2="{response}</s>"
  if("phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
    template0="Instruct: {system}\nOutput: Okay.\n"
    template1="Instruct: {message}\nOutput:"
    template2="{response}\n"  
  prompt = ""
  if RAGAddon is not None:
    system += RAGAddon
  if system is not None:
    prompt += template0.format(system=system) #"<s>"
  if history is not None:
    for user_message, bot_response in history[-historylimit:]:
      if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])  #"[INST] {user_prompt} [/INST] "
      if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) #"{bot_response}</s> "
  if message is not None: prompt += template1.format(message=message[:zeichenlimit])                #"[INST] {message} [/INST]"
  if system2 is not None:
    prompt += system2
  return prompt

import gradio as gr
import requests
import json
from datetime import datetime
import os
import re

def response(message, history):
  settings="Temporär"
  
  # Preprocessing to revent simple forms of prompt injection:
  #----------------------------------------------------------
  
  message=message.replace("[INST]","")
  message=message.replace("[/INST]","")
  message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
  
  # Load Memory if settings=="Permanent"
  #-------------------------------------
  if (settings=="Permanent"):
    if((len(history)==0)&(os.path.isfile(filename))): history=json.load(open(filename,'r',encoding="utf-8")) # retrieve history (if available)
  
  system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem."
  
  #RAG-layer 0: Intention-RAG
  #---------------------------
  typeResults=collection.query(
    query_texts=[message],
    n_results=4,
    where={"type": "0"}
  )
  myType=typeResults["metadatas"][0][0]["type2"] # einfachste Variante
  x=[x["type2"] for x in typeResults["metadatas"][0]] # liste die type2-Einträge auf
  myType="1a" if ((x.index("1a") if "1a" in x else len(x)+1) < (x.index("!1a") if "!1a" in x else len(x)+1)) else "else" # setze 1a wenn es besser passt als !1a
  if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("1a") if "1a" in x else len(x)+1)): # prüfe 1b wenn 1b besser passt als 1a
    if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("!1b") if "!1b" in x else len(x)+1)): myType="1b" # setze 1b wenn besser als !1b (sonst lass 1a/else)
  
  print("Message:"+message+"\n\nIntention-Type: "+myType+"\n\n"+str(typeResults))
  
  #RAG-layer 1: Respond with CustomDB-RAG (1a, 1b) or Memory-RAG
  #--------------------------------------------------------------
  rag=None
  historylimit=4
  combination=None
  
  ## RAG 1a: Respond with CustomDB-RAG 
  #-----------------------------------
  if(myType=="1a"):  
    
    RAGResults=collection.query(
      query_texts=[message],
      n_results=2,
      where={"type": myType}
      #where_document={"$contains":"search_string"}
    )
    dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]]
    sources=["source: "+s["source"]+")</small>" for s in RAGResults['metadatas'][0]]
    texts=RAGResults['documents'][0]
    combination = zip(texts,dists,sources)
    combination = [' '.join(triplets) for triplets in combination]
    #print(combination)
    rag="\n\n"
    rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende KI-Verfahren aus unserer Datenbank:\n"
    rag += str(texts)
    rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
    
  else:
    
    ## RAG 1a: Respond with CustomDB-RAG 
    #-----------------------------------
    if(myType=="1b"):  
    
      RAGResults=collection.query(
        query_texts=[message],
        n_results=2,
        where={"type": myType}
        #where_document={"$contains":"search_string"}
      )
      dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]]
      sources=["source: "+s["source"]+")</small>" for s in RAGResults['metadatas'][0]]
      texts=RAGResults['documents'][0]
      combination = zip(texts,dists,sources)
      combination = [' '.join(triplets) for triplets in combination]
      #print(combination)
      rag="\n\n"
      rag += "Beziehe dich in deiner Antwort AUSSCHLIEßLICH auf die folgenden Informationen:\n"
      rag += str(texts)
      rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
      
    ## Else: Respond with Memory-RAG
    #--------------------------------    
    else: 
  
      x=collection.get(include=[])["ids"]
      if(len(x)>(historylimit*2)): # turn on RAG when the database contains entries that are not shown within historylimit 
        RAGResults=collection.query(
          query_texts=[message],
          n_results=1,
          where={"type": "episode"}
        )
        texts=RAGResults["metadatas"][0][0]["dialog"] #str()
        #print("Message: "+message+"\n\nBest Match: "+texts)
        rag="\n\n"
        rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende Episode aus eurem Dialog:\n"
        rag += str(texts) 
        rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
  
  # Request Response from LLM:   
  system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
  print("RAG: "+rag)  
  print("System: "+system+"\n\nMessage: "+message)
  prompt=extend_prompt(
    message,                  # current message of the user
    history,                  # complete history 
    system,                   # system prompt
    rag,                      # RAG-component added to the system prompt
    system2,                  # fictive first words of the AI (neither displayed nor stored)
    historylimit=historylimit # number of past messages to consider for response to current message
    )
  print(prompt)
  # url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
  url="http://0.0.0.0:2600/v1/completions"  
  body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"}      # e.g. Mixtral-Instruct
  if("discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]})   # fix stop-token of DiscoLM
  response="" #+"("+myType+")\n"
  buffer=""
  print("URL: "+url)
  print("User: "+message+"\nAI: ")
  for text in requests.post(url, json=body, stream=True):  #-H 'accept: application/json' -H 'Content-Type: application/json'
    if buffer is None: buffer=""
    buffer=str("".join(buffer))
    # print("*** Raw String: "+str(text)+"\n***\n")
    text=text.decode('utf-8')
    if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
    # print("\n*** Buffer: "+str(buffer)+"\n***\n") 
    buffer=buffer.split('"finish_reason": null}]}')
    if(len(buffer)==1):
      buffer="".join(buffer)
      pass
    if(len(buffer)==2):
      part=buffer[0]+'"finish_reason": null}]}'  
      if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
      try: 
        part = str(json.loads(part)["choices"][0]["text"])
        print(part, end="", flush=True)
        response=response+part
        buffer="" # reset buffer
      except Exception as e:
        print("Exception:"+str(e))
        pass
    yield response
  if((myType=="1a")|(myType=="1b")): #add RAG-results to chat-output if appropriate 
    response=response+"\n\n<br><details><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" 
    yield response
  history.append((message, response)) # add current dialog to history
  # Store current state in DB if settings=="Permanent"
  if (settings=="Permanent"):
    x=collection.get(include=[])["ids"] # add current dialog to db
    collection.add(
      documents=[message,response], 
      metadatas=[
        { "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"},
        { "source": "DU",  "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}
      ], 
      ids=[str(len(x)+1),str(len(x)+2)] 
    )
    json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False)

gr.ChatInterface(
  response, 
  chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<br>Was ist dein Anliegen?"]],render_markdown=True)
  title="German AI-Interface to the Hugging Face Hub with advanced RAG",
  #additional_inputs=[gr.Dropdown(["Permanent","Temporär"],value="Temporär",label="Dialog sichern?")]
  ).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")