Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
response = ""
|
29 |
|
@@ -35,29 +27,65 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
],
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import difflib
|
4 |
|
5 |
+
# Load Hugging Face Inference client
|
|
|
|
|
6 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
7 |
|
8 |
+
# Load the speech-to-text model from Hugging Face
|
9 |
+
s2t = gr.Interface.load('huggingface/facebook/s2t-medium-librispeech-asr')
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def generate_text_with_huggingface(system_message, max_tokens, temperature, top_p):
|
13 |
+
"""
|
14 |
+
Function to generate text using Hugging Face Inference API
|
15 |
+
based on the system message, max tokens, temperature, and top-p.
|
16 |
+
"""
|
17 |
+
messages = [{"role": "system", "content": system_message}]
|
18 |
+
message = ""
|
19 |
|
20 |
response = ""
|
21 |
|
|
|
27 |
top_p=top_p,
|
28 |
):
|
29 |
token = message.choices[0].delta.content
|
|
|
30 |
response += token
|
31 |
+
|
32 |
+
return response.strip() # Return the generated text
|
33 |
+
|
34 |
+
|
35 |
+
def pronunciation_feedback(transcription, reference_text):
|
36 |
+
"""
|
37 |
+
Function to provide feedback on pronunciation based on differences
|
38 |
+
between the transcription and the reference (expected) text.
|
39 |
+
"""
|
40 |
+
diff = difflib.ndiff(reference_text.split(), transcription.split())
|
41 |
+
# Identify words that are incorrect or missing in the transcription
|
42 |
+
errors = [word for word in diff if word.startswith('- ')]
|
43 |
+
|
44 |
+
if errors:
|
45 |
+
feedback = "Mispronounced words: " + ', '.join([error[2:] for error in errors])
|
46 |
+
else:
|
47 |
+
feedback = "Great job! Your pronunciation is spot on."
|
48 |
+
|
49 |
+
return feedback
|
50 |
+
|
51 |
+
|
52 |
+
def transcribe_and_feedback(audio, system_message, max_tokens, temperature, top_p):
|
53 |
+
"""
|
54 |
+
Transcribe the audio and provide pronunciation feedback using the generated text.
|
55 |
+
"""
|
56 |
+
# Generate the reference text using Hugging Face Inference API
|
57 |
+
reference_text = generate_text_with_huggingface(system_message, max_tokens, temperature, top_p)
|
58 |
+
|
59 |
+
# Transcribe the audio using the speech-to-text model
|
60 |
+
transcription = s2t(audio)
|
61 |
+
|
62 |
+
# Provide pronunciation feedback based on the transcription and the generated text
|
63 |
+
feedback = pronunciation_feedback(transcription, reference_text)
|
64 |
+
|
65 |
+
return transcription, feedback, reference_text
|
66 |
+
|
67 |
+
|
68 |
+
# Gradio interface
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=transcribe_and_feedback, # The function that transcribes audio and provides feedback
|
71 |
+
inputs=[
|
72 |
+
gr.Audio(source="microphone", type="filepath", label="Record Audio"), # Microphone input for recording
|
73 |
+
gr.Textbox(value="Please read a simple sentence.", label="System message"), # Message used to generate text
|
74 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # Controls max token length for the generated text
|
75 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Temperature control for text generation
|
76 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") # Top-p control for text generation
|
77 |
+
],
|
78 |
+
outputs=[
|
79 |
+
gr.Textbox(label="Transcription"), # Display transcription of the audio
|
80 |
+
gr.Textbox(label="Pronunciation Feedback"), # Feedback on pronunciation
|
81 |
+
gr.Textbox(label="Generated Text (What You Were Supposed to Read)") # Display the text generated by the API
|
82 |
],
|
83 |
+
title="Speech-to-Text with Pronunciation Feedback",
|
84 |
+
description="Record an audio sample and the system will transcribe it, "
|
85 |
+
"compare your transcription to the generated text, and give pronunciation feedback.",
|
86 |
+
live=True # Real-time interaction
|
87 |
)
|
88 |
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
+
demo.launch(enable_queue=True, show_error=True)
|