Spaces:
Running
Running
""" | |
# api.py usage | |
` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" ` | |
## 执行参数: | |
`-s` - `SoVITS模型路径, 可在 config.py 中指定` | |
`-g` - `GPT模型路径, 可在 config.py 中指定` | |
调用请求缺少参考音频时使用 | |
`-dr` - `默认参考音频路径` | |
`-dt` - `默认参考音频文本` | |
`-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"` | |
`-d` - `推理设备, "cuda","cpu"` | |
`-a` - `绑定地址, 默认"127.0.0.1"` | |
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定` | |
`-fp` - `覆盖 config.py 使用全精度` | |
`-hp` - `覆盖 config.py 使用半精度` | |
`-sm` - `流式返回模式, 默认不启用, "close","c", "normal","n", "keepalive","k"` | |
·-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"` | |
·-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入` | |
`-hb` - `cnhubert路径` | |
`-b` - `bert路径` | |
## 调用: | |
### 推理 | |
endpoint: `/` | |
使用执行参数指定的参考音频: | |
GET: | |
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` | |
POST: | |
```json | |
{ | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh" | |
} | |
``` | |
使用执行参数指定的参考音频并设定分割符号: | |
GET: | |
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&cut_punc=,。` | |
POST: | |
```json | |
{ | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh", | |
"cut_punc": ",。", | |
} | |
``` | |
手动指定当次推理所使用的参考音频: | |
GET: | |
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` | |
POST: | |
```json | |
{ | |
"refer_wav_path": "123.wav", | |
"prompt_text": "一二三。", | |
"prompt_language": "zh", | |
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", | |
"text_language": "zh" | |
} | |
``` | |
RESP: | |
成功: 直接返回 wav 音频流, http code 200 | |
失败: 返回包含错误信息的 json, http code 400 | |
### 更换默认参考音频 | |
endpoint: `/change_refer` | |
key与推理端一样 | |
GET: | |
`http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh` | |
POST: | |
```json | |
{ | |
"refer_wav_path": "123.wav", | |
"prompt_text": "一二三。", | |
"prompt_language": "zh" | |
} | |
``` | |
RESP: | |
成功: json, http code 200 | |
失败: json, 400 | |
### 命令控制 | |
endpoint: `/control` | |
command: | |
"restart": 重新运行 | |
"exit": 结束运行 | |
GET: | |
`http://127.0.0.1:9880/control?command=restart` | |
POST: | |
```json | |
{ | |
"command": "restart" | |
} | |
``` | |
RESP: 无 | |
""" | |
import argparse | |
import os,re | |
import sys | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
sys.path.append("%s/GPT_SoVITS" % (now_dir)) | |
import signal | |
import LangSegment | |
from time import time as ttime | |
import torch | |
import librosa | |
import hashlib | |
import time | |
import random | |
import soundfile as sf | |
from fastapi import FastAPI, Request, HTTPException | |
from fastapi.responses import StreamingResponse, JSONResponse | |
import uvicorn | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
from feature_extractor import cnhubert | |
from io import BytesIO | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from module.mel_processing import spectrogram_torch | |
from tools.my_utils import load_audio | |
from base64 import b64decode | |
from pathlib import Path | |
import config as global_config | |
import logging | |
import subprocess | |
appkey = os.getenv("app_key") | |
class DefaultRefer: | |
def __init__(self, path, text, language): | |
self.path = args.default_refer_path | |
self.text = args.default_refer_text | |
self.language = args.default_refer_language | |
def is_ready(self) -> bool: | |
return is_full(self.path, self.text, self.language) | |
def b64_audio_to_file(b64_audio): | |
file_name = hashlib.md5(b64_audio.encode("utf-8")).hexdigest() | |
if not Path(f"./ref_tmp/{file_name}.wav").exists(): | |
audio_bytes = b64decode(b64_audio) | |
Path(f"./ref_tmp/{file_name}.wav").write_bytes(audio_bytes) | |
return file_name | |
def is_empty(*items): # 任意一项不为空返回False | |
for item in items: | |
if item is not None and item != "": | |
return False | |
return True | |
def is_full(*items): # 任意一项为空返回False | |
for item in items: | |
if item is None or item == "": | |
return False | |
return True | |
def change_sovits_weights(sovits_path): | |
global vq_model, hps | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
model_params_dict = vars(hps.model) | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**model_params_dict | |
) | |
if ("pretrained" not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
def change_gpt_weights(gpt_path): | |
global hz, max_sec, t2s_model, config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
logger.info("Number of parameter: %.2fM" % (total / 1e6)) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# if(is_half==True):phone_level_feature=phone_level_feature.half() | |
return phone_level_feature.T | |
def clean_text_inf(text, language): | |
phones, word2ph, norm_text = clean_text(text, language) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language=language.replace("all_","") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
def get_phones_and_bert(text,language): | |
if language in {"en","all_zh","all_ja"}: | |
language = language.replace("all_","") | |
if language == "en": | |
LangSegment.setfilters(["en"]) | |
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) | |
else: | |
# 因无法区别中日文汉字,以用户输入为准 | |
formattext = text | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
phones, word2ph, norm_text = clean_text_inf(formattext, language) | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
elif language in {"zh", "ja","auto"}: | |
textlist=[] | |
langlist=[] | |
LangSegment.setfilters(["zh","ja","en","ko"]) | |
if language == "auto": | |
for tmp in LangSegment.getTexts(text): | |
if tmp["lang"] == "ko": | |
langlist.append("zh") | |
textlist.append(tmp["text"]) | |
else: | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
else: | |
for tmp in LangSegment.getTexts(text): | |
if tmp["lang"] == "en": | |
langlist.append(tmp["lang"]) | |
else: | |
# 因无法区别中日文汉字,以用户输入为准 | |
langlist.append(language) | |
textlist.append(tmp["text"]) | |
# logger.info(textlist) | |
# logger.info(langlist) | |
phones_list = [] | |
bert_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
phones_list.append(phones) | |
norm_text_list.append(norm_text) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
phones = sum(phones_list, []) | |
norm_text = ''.join(norm_text_list) | |
return phones,bert.to(torch.float16 if is_half == True else torch.float32),norm_text | |
class DictToAttrRecursive: | |
def __init__(self, input_dict): | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
# 如果值是字典,递归调用构造函数 | |
setattr(self, key, DictToAttrRecursive(value)) | |
else: | |
setattr(self, key, value) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, | |
hps.data.win_length, center=False) | |
return spec | |
def pack_audio(audio_bytes, data, rate): | |
if media_type == "ogg": | |
audio_bytes = pack_ogg(audio_bytes, data, rate) | |
elif media_type == "aac": | |
audio_bytes = pack_aac(audio_bytes, data, rate) | |
else: | |
# wav无法流式, 先暂存raw | |
audio_bytes = pack_raw(audio_bytes, data, rate) | |
return audio_bytes | |
def pack_ogg(audio_bytes, data, rate): | |
# Author: AkagawaTsurunaki | |
# Issue: | |
# Stack overflow probabilistically occurs | |
# when the function `sf_writef_short` of `libsndfile_64bit.dll` is called | |
# using the Python library `soundfile` | |
# Note: | |
# This is an issue related to `libsndfile`, not this project itself. | |
# It happens when you generate a large audio tensor (about 499804 frames in my PC) | |
# and try to convert it to an ogg file. | |
# Related: | |
# https://github.com/RVC-Boss/GPT-SoVITS/issues/1199 | |
# https://github.com/libsndfile/libsndfile/issues/1023 | |
# https://github.com/bastibe/python-soundfile/issues/396 | |
# Suggestion: | |
# Or split the whole audio data into smaller audio segment to avoid stack overflow? | |
def handle_pack_ogg(): | |
with sf.SoundFile(audio_bytes, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file: | |
audio_file.write(data) | |
import threading | |
# See: https://docs.python.org/3/library/threading.html | |
# The stack size of this thread is at least 32768 | |
# If stack overflow error still occurs, just modify the `stack_size`. | |
# stack_size = n * 4096, where n should be a positive integer. | |
# Here we chose n = 4096. | |
stack_size = 4096 * 4096 | |
try: | |
threading.stack_size(stack_size) | |
pack_ogg_thread = threading.Thread(target=handle_pack_ogg) | |
pack_ogg_thread.start() | |
pack_ogg_thread.join() | |
except RuntimeError as e: | |
# If changing the thread stack size is unsupported, a RuntimeError is raised. | |
print("RuntimeError: {}".format(e)) | |
print("Changing the thread stack size is unsupported.") | |
except ValueError as e: | |
# If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified. | |
print("ValueError: {}".format(e)) | |
print("The specified stack size is invalid.") | |
return audio_bytes | |
def pack_raw(audio_bytes, data, rate): | |
audio_bytes.write(data.tobytes()) | |
return audio_bytes | |
def pack_wav(audio_bytes, rate): | |
data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int16) | |
wav_bytes = BytesIO() | |
sf.write(wav_bytes, data, rate, format='wav') | |
return wav_bytes | |
def pack_aac(audio_bytes, data, rate): | |
process = subprocess.Popen([ | |
'ffmpeg', | |
'-f', 's16le', # 输入16位有符号小端整数PCM | |
'-ar', str(rate), # 设置采样率 | |
'-ac', '1', # 单声道 | |
'-i', 'pipe:0', # 从管道读取输入 | |
'-c:a', 'aac', # 音频编码器为AAC | |
'-b:a', '192k', # 比特率 | |
'-vn', # 不包含视频 | |
'-f', 'adts', # 输出AAC数据流格式 | |
'pipe:1' # 将输出写入管道 | |
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
out, _ = process.communicate(input=data.tobytes()) | |
audio_bytes.write(out) | |
return audio_bytes | |
def read_clean_buffer(audio_bytes): | |
audio_chunk = audio_bytes.getvalue() | |
audio_bytes.truncate(0) | |
audio_bytes.seek(0) | |
return audio_bytes, audio_chunk | |
def cut_text(text, punc): | |
punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}] | |
if len(punc_list) > 0: | |
punds = r"[" + "".join(punc_list) + r"]" | |
text = text.strip("\n") | |
items = re.split(f"({punds})", text) | |
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])] | |
# 在句子不存在符号或句尾无符号的时候保证文本完整 | |
if len(items)%2 == 1: | |
mergeitems.append(items[-1]) | |
text = "\n".join(mergeitems) | |
while "\n\n" in text: | |
text = text.replace("\n\n", "\n") | |
return text | |
def only_punc(text): | |
return not any(t.isalnum() or t.isalpha() for t in text) | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
prompt_language, text = prompt_language, text.strip("\n") | |
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if (is_half == True): | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
prompt_language = dict_language[prompt_language.lower()] | |
text_language = dict_language[text_language.lower()] | |
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language) | |
texts = text.split("\n") | |
audio_bytes = BytesIO() | |
for text in texts: | |
# 简单防止纯符号引发参考音频泄露 | |
if only_punc(text): | |
continue | |
audio_opt = [] | |
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config['inference']['top_k'], | |
early_stop_num=hz * max_sec) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if (is_half == True): | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = \ | |
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), | |
refer).detach().cpu().numpy()[ | |
0, 0] ###试试重建不带上prompt部分 | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16),hps.data.sampling_rate) | |
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
if stream_mode == "normal": | |
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes) | |
yield audio_chunk | |
if not stream_mode == "normal": | |
if media_type == "wav": | |
audio_bytes = pack_wav(audio_bytes,hps.data.sampling_rate) | |
yield audio_bytes.getvalue() | |
def handle_control(command): | |
if command == "restart": | |
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) | |
elif command == "exit": | |
os.kill(os.getpid(), signal.SIGTERM) | |
exit(0) | |
def handle_change(path, text, language): | |
if is_empty(path, text, language): | |
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400) | |
if path != "" or path is not None: | |
default_refer.path = path | |
if text != "" or text is not None: | |
default_refer.text = text | |
if language != "" or language is not None: | |
default_refer.language = language | |
logger.info(f"当前默认参考音频路径: {default_refer.path}") | |
logger.info(f"当前默认参考音频文本: {default_refer.text}") | |
logger.info(f"当前默认参考音频语种: {default_refer.language}") | |
logger.info(f"is_ready: {default_refer.is_ready()}") | |
return JSONResponse({"code": 0, "message": "Success"}, status_code=200) | |
def handle(refer_wav_path,ref_wav_b64, prompt_text, prompt_language, text, text_language, cut_punc): | |
if refer_wav_path == "" or refer_wav_path is None: | |
file_name = b64_audio_to_file(ref_wav_b64) | |
refer_wav_path = f"./ref_tmp/{file_name}.wav" | |
if ( | |
refer_wav_path == "" or refer_wav_path is None | |
or prompt_text == "" or prompt_text is None | |
or prompt_language == "" or prompt_language is None | |
): | |
refer_wav_path, prompt_text, prompt_language = ( | |
default_refer.path, | |
default_refer.text, | |
default_refer.language, | |
) | |
if not default_refer.is_ready(): | |
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400) | |
if cut_punc == None: | |
text = cut_text(text,default_cut_punc) | |
else: | |
text = cut_text(text,cut_punc) | |
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language), media_type="audio/"+media_type) | |
# -------------------------------- | |
# 初始化部分 | |
# -------------------------------- | |
dict_language = { | |
"中文": "all_zh", | |
"英文": "en", | |
"日文": "all_ja", | |
"中英混合": "zh", | |
"日英混合": "ja", | |
"多语种混合": "auto", #多语种启动切分识别语种 | |
"all_zh": "all_zh", | |
"en": "en", | |
"all_ja": "all_ja", | |
"zh": "zh", | |
"ja": "ja", | |
"auto": "auto", | |
} | |
# logger | |
logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG) | |
logger = logging.getLogger('uvicorn') | |
# 获取配置 | |
g_config = global_config.Config() | |
# 获取参数 | |
parser = argparse.ArgumentParser(description="GPT-SoVITS api") | |
parser.add_argument("-s", "--sovits_path", type=str, default="./models/AG_Sovits.pth", help="SoVITS模型路径") | |
parser.add_argument("-g", "--gpt_path", type=str, default="./models/AG_GPT.ckpt", help="GPT模型路径") | |
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径") | |
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") | |
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") | |
parser.add_argument("-d", "--device", type=str, default="cpu", help="cuda / cpu") | |
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0") | |
parser.add_argument("-p", "--port", type=int, default=7860, help="default: 9880") | |
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度") | |
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度") | |
# bool值的用法为 `python ./api.py -fp ...` | |
# 此时 full_precision==True, half_precision==False | |
parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal / keepalive") | |
parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac") | |
parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定, 符号范围,.;?!、,。?!;:…") | |
# 切割常用分句符为 `python ./api.py -cp ".?!。?!"` | |
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") | |
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") | |
args = parser.parse_args() | |
sovits_path = args.sovits_path | |
gpt_path = args.gpt_path | |
device = args.device | |
port = args.port | |
host = args.bind_addr | |
cnhubert_base_path = args.hubert_path | |
bert_path = args.bert_path | |
default_cut_punc = args.cut_punc | |
# 应用参数配置 | |
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language) | |
# 模型路径检查 | |
if sovits_path == "": | |
sovits_path = g_config.pretrained_sovits_path | |
logger.warn(f"未指定SoVITS模型路径, fallback后当前值: {sovits_path}") | |
if gpt_path == "": | |
gpt_path = g_config.pretrained_gpt_path | |
logger.warn(f"未指定GPT模型路径, fallback后当前值: {gpt_path}") | |
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用 | |
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "": | |
default_refer.path, default_refer.text, default_refer.language = "", "", "" | |
logger.info("未指定默认参考音频") | |
else: | |
logger.info(f"默认参考音频路径: {default_refer.path}") | |
logger.info(f"默认参考音频文本: {default_refer.text}") | |
logger.info(f"默认参考音频语种: {default_refer.language}") | |
# 获取半精度 | |
is_half = g_config.is_half | |
if args.full_precision: | |
is_half = False | |
if args.half_precision: | |
is_half = True | |
if args.full_precision and args.half_precision: | |
is_half = g_config.is_half # 炒饭fallback | |
logger.info(f"半精: {is_half}") | |
# 流式返回模式 | |
if args.stream_mode.lower() in ["normal","n"]: | |
stream_mode = "normal" | |
logger.info("流式返回已开启") | |
else: | |
stream_mode = "close" | |
# 音频编码格式 | |
if args.media_type.lower() in ["aac","ogg"]: | |
media_type = args.media_type.lower() | |
elif stream_mode == "close": | |
media_type = "wav" | |
else: | |
media_type = "ogg" | |
logger.info(f"编码格式: {media_type}") | |
# 初始化模型 | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
ssl_model = cnhubert.get_model() | |
if is_half: | |
bert_model = bert_model.half().to(device) | |
ssl_model = ssl_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
ssl_model = ssl_model.to(device) | |
change_sovits_weights(sovits_path) | |
change_gpt_weights(gpt_path) | |
# -------------------------------- | |
# 接口部分 | |
# -------------------------------- | |
app = FastAPI() | |
async def set_model(request: Request): | |
json_post_raw = await request.json() | |
global gpt_path | |
gpt_path=json_post_raw.get("gpt_model_path") | |
global sovits_path | |
sovits_path=json_post_raw.get("sovits_model_path") | |
logger.info("gptpath"+gpt_path+";vitspath"+sovits_path) | |
change_sovits_weights(sovits_path) | |
change_gpt_weights(gpt_path) | |
return "ok" | |
async def control(request: Request): | |
json_post_raw = await request.json() | |
return handle_control(json_post_raw.get("command")) | |
async def control(command: str = None): | |
return handle_control(command) | |
async def change_refer(request: Request): | |
json_post_raw = await request.json() | |
return handle_change( | |
json_post_raw.get("refer_wav_path"), | |
json_post_raw.get("prompt_text"), | |
json_post_raw.get("prompt_language") | |
) | |
async def change_refer( | |
refer_wav_path: str = None, | |
prompt_text: str = None, | |
prompt_language: str = None | |
): | |
return handle_change(refer_wav_path, prompt_text, prompt_language) | |
async def tts_endpoint(request: Request): | |
json_post_raw = await request.json() | |
if json_post_raw.get("app_key") == appkey: | |
return handle( | |
json_post_raw.get("refer_wav_path"), | |
json_post_raw.get("refer_wav_base64"), | |
json_post_raw.get("prompt_text"), | |
json_post_raw.get("prompt_language"), | |
json_post_raw.get("text"), | |
json_post_raw.get("text_language"), | |
json_post_raw.get("cut_punc"), | |
) | |
else: | |
return JSONResponse({"code": 400, "message": "app_key错误"}, status_code=400) | |
def greet(): | |
return "This is GPT-SoVITS API, please use POST method to send request." | |
if __name__ == "__main__": | |
uvicorn.run(app, host=host, port=port, workers=1) | |