""" # api.py usage ` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" ` ## 执行参数: `-s` - `SoVITS模型路径, 可在 config.py 中指定` `-g` - `GPT模型路径, 可在 config.py 中指定` 调用请求缺少参考音频时使用 `-dr` - `默认参考音频路径` `-dt` - `默认参考音频文本` `-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"` `-d` - `推理设备, "cuda","cpu"` `-a` - `绑定地址, 默认"127.0.0.1"` `-p` - `绑定端口, 默认9880, 可在 config.py 中指定` `-fp` - `覆盖 config.py 使用全精度` `-hp` - `覆盖 config.py 使用半精度` `-sm` - `流式返回模式, 默认不启用, "close","c", "normal","n", "keepalive","k"` ·-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"` ·-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入` `-hb` - `cnhubert路径` `-b` - `bert路径` ## 调用: ### 推理 endpoint: `/` 使用执行参数指定的参考音频: GET: `http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` POST: ```json { "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", "text_language": "zh" } ``` 使用执行参数指定的参考音频并设定分割符号: GET: `http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&cut_punc=,。` POST: ```json { "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", "text_language": "zh", "cut_punc": ",。", } ``` 手动指定当次推理所使用的参考音频: GET: `http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` POST: ```json { "refer_wav_path": "123.wav", "prompt_text": "一二三。", "prompt_language": "zh", "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", "text_language": "zh" } ``` RESP: 成功: 直接返回 wav 音频流, http code 200 失败: 返回包含错误信息的 json, http code 400 ### 更换默认参考音频 endpoint: `/change_refer` key与推理端一样 GET: `http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh` POST: ```json { "refer_wav_path": "123.wav", "prompt_text": "一二三。", "prompt_language": "zh" } ``` RESP: 成功: json, http code 200 失败: json, 400 ### 命令控制 endpoint: `/control` command: "restart": 重新运行 "exit": 结束运行 GET: `http://127.0.0.1:9880/control?command=restart` POST: ```json { "command": "restart" } ``` RESP: 无 """ import argparse import os,re import sys now_dir = os.getcwd() sys.path.append(now_dir) sys.path.append("%s/GPT_SoVITS" % (now_dir)) import signal import LangSegment from time import time as ttime import torch import librosa import hashlib import time import random import soundfile as sf from fastapi import FastAPI, Request, HTTPException from fastapi.responses import StreamingResponse, JSONResponse import uvicorn from transformers import AutoModelForMaskedLM, AutoTokenizer import numpy as np from feature_extractor import cnhubert from io import BytesIO from module.models import SynthesizerTrn from AR.models.t2s_lightning_module import Text2SemanticLightningModule from text import cleaned_text_to_sequence from text.cleaner import clean_text from module.mel_processing import spectrogram_torch from tools.my_utils import load_audio from base64 import b64decode from pathlib import Path import config as global_config import logging import subprocess import nltk appkey = os.getenv("app_key") nltk.data.path.append("./nltk_data") class DefaultRefer: def __init__(self, path, text, language): self.path = args.default_refer_path self.text = args.default_refer_text self.language = args.default_refer_language def is_ready(self) -> bool: return is_full(self.path, self.text, self.language) def b64_audio_to_file(b64_audio): file_name = hashlib.md5(b64_audio.encode("utf-8")).hexdigest() if not Path(f"./ref_tmp/{file_name}.wav").exists(): audio_bytes = b64decode(b64_audio) Path(f"./ref_tmp/{file_name}.wav").write_bytes(audio_bytes) return file_name def is_empty(*items): # 任意一项不为空返回False for item in items: if item is not None and item != "": return False return True def is_full(*items): # 任意一项为空返回False for item in items: if item is None or item == "": return False return True def change_sovits_weights(sovits_path): global vq_model, hps dict_s2 = torch.load(sovits_path, map_location="cpu") hps = dict_s2["config"] hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" model_params_dict = vars(hps.model) vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **model_params_dict ) if ("pretrained" not in sovits_path): del vq_model.enc_q if is_half == True: vq_model = vq_model.half().to(device) else: vq_model = vq_model.to(device) vq_model.eval() vq_model.load_state_dict(dict_s2["weight"], strict=False) def change_gpt_weights(gpt_path): global hz, max_sec, t2s_model, config hz = 50 dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] max_sec = config["data"]["max_sec"] t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if is_half == True: t2s_model = t2s_model.half() t2s_model = t2s_model.to(device) t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) logger.info("Number of parameter: %.2fM" % (total / 1e6)) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) # if(is_half==True):phone_level_feature=phone_level_feature.half() return phone_level_feature.T def clean_text_inf(text, language): phones, word2ph, norm_text = clean_text(text, language) phones = cleaned_text_to_sequence(phones) return phones, word2ph, norm_text def get_bert_inf(phones, word2ph, norm_text, language): language=language.replace("all_","") if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) return bert def get_phones_and_bert(text,language): if language in {"en","all_zh","all_ja"}: language = language.replace("all_","") if language == "en": LangSegment.setfilters(["en"]) formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) else: # 因无法区别中日文汉字,以用户输入为准 formattext = text while " " in formattext: formattext = formattext.replace(" ", " ") phones, word2ph, norm_text = clean_text_inf(formattext, language) if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(device) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) elif language in {"zh", "ja","auto"}: textlist=[] langlist=[] LangSegment.setfilters(["zh","ja","en","ko"]) if language == "auto": for tmp in LangSegment.getTexts(text): if tmp["lang"] == "ko": langlist.append("zh") textlist.append(tmp["text"]) else: langlist.append(tmp["lang"]) textlist.append(tmp["text"]) else: for tmp in LangSegment.getTexts(text): if tmp["lang"] == "en": langlist.append(tmp["lang"]) else: # 因无法区别中日文汉字,以用户输入为准 langlist.append(language) textlist.append(tmp["text"]) # logger.info(textlist) # logger.info(langlist) phones_list = [] bert_list = [] norm_text_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) bert = get_bert_inf(phones, word2ph, norm_text, lang) phones_list.append(phones) norm_text_list.append(norm_text) bert_list.append(bert) bert = torch.cat(bert_list, dim=1) phones = sum(phones_list, []) norm_text = ''.join(norm_text_list) return phones,bert.to(torch.float16 if is_half == True else torch.float32),norm_text class DictToAttrRecursive: def __init__(self, input_dict): for key, value in input_dict.items(): if isinstance(value, dict): # 如果值是字典,递归调用构造函数 setattr(self, key, DictToAttrRecursive(value)) else: setattr(self, key, value) def get_spepc(hps, filename): audio = load_audio(filename, int(hps.data.sampling_rate)) audio = torch.FloatTensor(audio) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False) return spec def pack_audio(audio_bytes, data, rate): if media_type == "ogg": audio_bytes = pack_ogg(audio_bytes, data, rate) elif media_type == "aac": audio_bytes = pack_aac(audio_bytes, data, rate) else: # wav无法流式, 先暂存raw audio_bytes = pack_raw(audio_bytes, data, rate) return audio_bytes def pack_ogg(audio_bytes, data, rate): # Author: AkagawaTsurunaki # Issue: # Stack overflow probabilistically occurs # when the function `sf_writef_short` of `libsndfile_64bit.dll` is called # using the Python library `soundfile` # Note: # This is an issue related to `libsndfile`, not this project itself. # It happens when you generate a large audio tensor (about 499804 frames in my PC) # and try to convert it to an ogg file. # Related: # https://github.com/RVC-Boss/GPT-SoVITS/issues/1199 # https://github.com/libsndfile/libsndfile/issues/1023 # https://github.com/bastibe/python-soundfile/issues/396 # Suggestion: # Or split the whole audio data into smaller audio segment to avoid stack overflow? def handle_pack_ogg(): with sf.SoundFile(audio_bytes, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file: audio_file.write(data) import threading # See: https://docs.python.org/3/library/threading.html # The stack size of this thread is at least 32768 # If stack overflow error still occurs, just modify the `stack_size`. # stack_size = n * 4096, where n should be a positive integer. # Here we chose n = 4096. stack_size = 4096 * 4096 try: threading.stack_size(stack_size) pack_ogg_thread = threading.Thread(target=handle_pack_ogg) pack_ogg_thread.start() pack_ogg_thread.join() except RuntimeError as e: # If changing the thread stack size is unsupported, a RuntimeError is raised. print("RuntimeError: {}".format(e)) print("Changing the thread stack size is unsupported.") except ValueError as e: # If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified. print("ValueError: {}".format(e)) print("The specified stack size is invalid.") return audio_bytes def pack_raw(audio_bytes, data, rate): audio_bytes.write(data.tobytes()) return audio_bytes def pack_wav(audio_bytes, rate): data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int16) wav_bytes = BytesIO() sf.write(wav_bytes, data, rate, format='wav') return wav_bytes def pack_aac(audio_bytes, data, rate): process = subprocess.Popen([ 'ffmpeg', '-f', 's16le', # 输入16位有符号小端整数PCM '-ar', str(rate), # 设置采样率 '-ac', '1', # 单声道 '-i', 'pipe:0', # 从管道读取输入 '-c:a', 'aac', # 音频编码器为AAC '-b:a', '192k', # 比特率 '-vn', # 不包含视频 '-f', 'adts', # 输出AAC数据流格式 'pipe:1' # 将输出写入管道 ], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, _ = process.communicate(input=data.tobytes()) audio_bytes.write(out) return audio_bytes def read_clean_buffer(audio_bytes): audio_chunk = audio_bytes.getvalue() audio_bytes.truncate(0) audio_bytes.seek(0) return audio_bytes, audio_chunk def cut_text(text, punc): punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}] if len(punc_list) > 0: punds = r"[" + "".join(punc_list) + r"]" text = text.strip("\n") items = re.split(f"({punds})", text) mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])] # 在句子不存在符号或句尾无符号的时候保证文本完整 if len(items)%2 == 1: mergeitems.append(items[-1]) text = "\n".join(mergeitems) while "\n\n" in text: text = text.replace("\n\n", "\n") return text def only_punc(text): return not any(t.isalnum() or t.isalpha() for t in text) def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): t0 = ttime() prompt_text = prompt_text.strip("\n") prompt_language, text = prompt_language, text.strip("\n") zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) if (is_half == True): wav16k = wav16k.half().to(device) zero_wav_torch = zero_wav_torch.half().to(device) else: wav16k = wav16k.to(device) zero_wav_torch = zero_wav_torch.to(device) wav16k = torch.cat([wav16k, zero_wav_torch]) ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] t1 = ttime() prompt_language = dict_language[prompt_language.lower()] text_language = dict_language[text_language.lower()] phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language) texts = text.split("\n") audio_bytes = BytesIO() for text in texts: # 简单防止纯符号引发参考音频泄露 if only_punc(text): continue audio_opt = [] phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) prompt = prompt_semantic.unsqueeze(0).to(device) t2 = ttime() with torch.no_grad(): # pred_semantic = t2s_model.model.infer( pred_semantic, idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, prompt, bert, # prompt_phone_len=ph_offset, top_k=config['inference']['top_k'], early_stop_num=hz * max_sec) t3 = ttime() # print(pred_semantic.shape,idx) pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 refer = get_spepc(hps, ref_wav_path) # .to(device) if (is_half == True): refer = refer.half().to(device) else: refer = refer.to(device) # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] audio = \ vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[ 0, 0] ###试试重建不带上prompt部分 audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16),hps.data.sampling_rate) # logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) if stream_mode == "normal": audio_bytes, audio_chunk = read_clean_buffer(audio_bytes) yield audio_chunk if not stream_mode == "normal": if media_type == "wav": audio_bytes = pack_wav(audio_bytes,hps.data.sampling_rate) yield audio_bytes.getvalue() def handle_control(command): if command == "restart": os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) elif command == "exit": os.kill(os.getpid(), signal.SIGTERM) exit(0) def handle_change(path, text, language): if is_empty(path, text, language): return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400) if path != "" or path is not None: default_refer.path = path if text != "" or text is not None: default_refer.text = text if language != "" or language is not None: default_refer.language = language logger.info(f"当前默认参考音频路径: {default_refer.path}") logger.info(f"当前默认参考音频文本: {default_refer.text}") logger.info(f"当前默认参考音频语种: {default_refer.language}") logger.info(f"is_ready: {default_refer.is_ready()}") return JSONResponse({"code": 0, "message": "Success"}, status_code=200) def handle(refer_wav_path,ref_wav_b64, prompt_text, prompt_language, text, text_language, cut_punc): if refer_wav_path == "" or refer_wav_path is None: file_name = b64_audio_to_file(ref_wav_b64) refer_wav_path = f"./ref_tmp/{file_name}.wav" if ( refer_wav_path == "" or refer_wav_path is None or prompt_text == "" or prompt_text is None or prompt_language == "" or prompt_language is None ): refer_wav_path, prompt_text, prompt_language = ( default_refer.path, default_refer.text, default_refer.language, ) if not default_refer.is_ready(): return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400) if cut_punc == None: text = cut_text(text,default_cut_punc) else: text = cut_text(text,cut_punc) return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language), media_type="audio/"+media_type) # -------------------------------- # 初始化部分 # -------------------------------- dict_language = { "中文": "all_zh", "英文": "en", "日文": "all_ja", "中英混合": "zh", "日英混合": "ja", "多语种混合": "auto", #多语种启动切分识别语种 "all_zh": "all_zh", "en": "en", "all_ja": "all_ja", "zh": "zh", "ja": "ja", "auto": "auto", } # logger logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG) logger = logging.getLogger('uvicorn') # 获取配置 g_config = global_config.Config() # 获取参数 parser = argparse.ArgumentParser(description="GPT-SoVITS api") parser.add_argument("-s", "--sovits_path", type=str, default="./models/AG_Sovits.pth", help="SoVITS模型路径") parser.add_argument("-g", "--gpt_path", type=str, default="./models/AG_GPT.ckpt", help="GPT模型路径") parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径") parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") parser.add_argument("-d", "--device", type=str, default="cpu", help="cuda / cpu") parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0") parser.add_argument("-p", "--port", type=int, default=7860, help="default: 9880") parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度") parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度") # bool值的用法为 `python ./api.py -fp ...` # 此时 full_precision==True, half_precision==False parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal / keepalive") parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac") parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定, 符号范围,.;?!、,。?!;:…") # 切割常用分句符为 `python ./api.py -cp ".?!。?!"` parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") args = parser.parse_args() sovits_path = args.sovits_path gpt_path = args.gpt_path device = args.device port = args.port host = args.bind_addr cnhubert_base_path = args.hubert_path bert_path = args.bert_path default_cut_punc = args.cut_punc # 应用参数配置 default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language) # 模型路径检查 if sovits_path == "": sovits_path = g_config.pretrained_sovits_path logger.warn(f"未指定SoVITS模型路径, fallback后当前值: {sovits_path}") if gpt_path == "": gpt_path = g_config.pretrained_gpt_path logger.warn(f"未指定GPT模型路径, fallback后当前值: {gpt_path}") # 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用 if default_refer.path == "" or default_refer.text == "" or default_refer.language == "": default_refer.path, default_refer.text, default_refer.language = "", "", "" logger.info("未指定默认参考音频") else: logger.info(f"默认参考音频路径: {default_refer.path}") logger.info(f"默认参考音频文本: {default_refer.text}") logger.info(f"默认参考音频语种: {default_refer.language}") # 获取半精度 is_half = g_config.is_half if args.full_precision: is_half = False if args.half_precision: is_half = True if args.full_precision and args.half_precision: is_half = g_config.is_half # 炒饭fallback logger.info(f"半精: {is_half}") # 流式返回模式 if args.stream_mode.lower() in ["normal","n"]: stream_mode = "normal" logger.info("流式返回已开启") else: stream_mode = "close" # 音频编码格式 if args.media_type.lower() in ["aac","ogg"]: media_type = args.media_type.lower() elif stream_mode == "close": media_type = "wav" else: media_type = "ogg" logger.info(f"编码格式: {media_type}") # 初始化模型 cnhubert.cnhubert_base_path = cnhubert_base_path tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) ssl_model = cnhubert.get_model() if is_half: bert_model = bert_model.half().to(device) ssl_model = ssl_model.half().to(device) else: bert_model = bert_model.to(device) ssl_model = ssl_model.to(device) change_sovits_weights(sovits_path) change_gpt_weights(gpt_path) # -------------------------------- # 接口部分 # -------------------------------- app = FastAPI() @app.post("/set_model") async def set_model(request: Request): json_post_raw = await request.json() global gpt_path gpt_path=json_post_raw.get("gpt_model_path") global sovits_path sovits_path=json_post_raw.get("sovits_model_path") logger.info("gptpath"+gpt_path+";vitspath"+sovits_path) change_sovits_weights(sovits_path) change_gpt_weights(gpt_path) return "ok" @app.post("/control") async def control(request: Request): json_post_raw = await request.json() return handle_control(json_post_raw.get("command")) @app.get("/control") async def control(command: str = None): return handle_control(command) @app.post("/change_refer") async def change_refer(request: Request): json_post_raw = await request.json() return handle_change( json_post_raw.get("refer_wav_path"), json_post_raw.get("prompt_text"), json_post_raw.get("prompt_language") ) @app.get("/change_refer") async def change_refer( refer_wav_path: str = None, prompt_text: str = None, prompt_language: str = None ): return handle_change(refer_wav_path, prompt_text, prompt_language) @app.post("/") async def tts_endpoint(request: Request): json_post_raw = await request.json() if json_post_raw.get("app_key") == appkey: return handle( json_post_raw.get("refer_wav_path"), json_post_raw.get("refer_wav_base64"), json_post_raw.get("prompt_text"), json_post_raw.get("prompt_language"), json_post_raw.get("text"), json_post_raw.get("text_language"), json_post_raw.get("cut_punc"), ) else: return JSONResponse({"code": 400, "message": "app_key错误"}, status_code=400) @app.get("/") def greet(): return "This is GPT-SoVITS API, please use POST method to send request." if __name__ == "__main__": uvicorn.run(app, host=host, port=port, workers=1)