Spaces:
Build error
Build error
import argparse, os, sys, glob | |
import datetime, time | |
from omegaconf import OmegaConf | |
import torch | |
from decord import VideoReader, cpu | |
import torchvision | |
from pytorch_lightning import seed_everything | |
from lvdm.samplers.ddim import DDIMSampler | |
from lvdm.utils.common_utils import instantiate_from_config | |
from lvdm.utils.saving_utils import tensor_to_mp4 | |
def get_filelist(data_dir, ext='*'): | |
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) | |
file_list.sort() | |
return file_list | |
def load_model_checkpoint(model, ckpt, adapter_ckpt=None): | |
print('>>> Loading checkpoints ...') | |
if adapter_ckpt: | |
## main model | |
state_dict = torch.load(ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
model.load_state_dict(state_dict, strict=False) | |
print('@model checkpoint loaded.') | |
## adapter | |
state_dict = torch.load(adapter_ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
model.adapter.load_state_dict(state_dict, strict=True) | |
print('@adapter checkpoint loaded.') | |
else: | |
state_dict = torch.load(ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
model.load_state_dict(state_dict, strict=True) | |
print('@model checkpoint loaded.') | |
return model | |
def load_prompts(prompt_file): | |
f = open(prompt_file, 'r') | |
prompt_list = [] | |
for idx, line in enumerate(f.readlines()): | |
l = line.strip() | |
if len(l) != 0: | |
prompt_list.append(l) | |
f.close() | |
return prompt_list | |
def load_video(filepath, frame_stride, video_size=(256,256), video_frames=16): | |
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0]) | |
max_frames = len(vidreader) | |
temp_stride = max_frames // video_frames if frame_stride == -1 else frame_stride | |
if temp_stride * (video_frames-1) >= max_frames: | |
print(f'Warning: default frame stride is used because the input video clip {max_frames} is not long enough.') | |
temp_stride = max_frames // video_frames | |
frame_indices = [temp_stride*i for i in range(video_frames)] | |
frames = vidreader.get_batch(frame_indices) | |
## [t,h,w,c] -> [c,t,h,w] | |
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() | |
frame_tensor = (frame_tensor / 255. - 0.5) * 2 | |
return frame_tensor | |
def save_results(prompt, samples, inputs, filename, realdir, fakedir, fps=10): | |
## save prompt | |
prompt = prompt[0] if isinstance(prompt, list) else prompt | |
path = os.path.join(realdir, "%s.txt"%filename) | |
with open(path, 'w') as f: | |
f.write(f'{prompt}') | |
f.close() | |
## save video | |
videos = [inputs, samples] | |
savedirs = [realdir, fakedir] | |
for idx, video in enumerate(videos): | |
if video is None: | |
continue | |
# b,c,t,h,w | |
video = video.detach().cpu() | |
video = torch.clamp(video.float(), -1., 1.) | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
path = os.path.join(savedirs[idx], "%s.mp4"%filename) | |
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def adapter_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \ | |
unconditional_guidance_scale=1.0, unconditional_guidance_scale_temporal=None, **kwargs): | |
ddim_sampler = DDIMSampler(model) | |
batch_size = noise_shape[0] | |
## get condition embeddings (support single prompt only) | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
cond = model.get_learned_conditioning(prompts) | |
if unconditional_guidance_scale != 1.0: | |
prompts = batch_size * [""] | |
uc = model.get_learned_conditioning(prompts) | |
else: | |
uc = None | |
## adapter features: process in 2D manner | |
b, c, t, h, w = videos.shape | |
extra_cond = model.get_batch_depth(videos, (h,w)) | |
features_adapter = model.get_adapter_features(extra_cond) | |
batch_variants = [] | |
for _ in range(n_samples): | |
if ddim_sampler is not None: | |
samples, _ = ddim_sampler.sample(S=ddim_steps, | |
conditioning=cond, | |
batch_size=noise_shape[0], | |
shape=noise_shape[1:], | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
temporal_length=noise_shape[2], | |
conditional_guidance_scale_temporal=unconditional_guidance_scale_temporal, | |
features_adapter=features_adapter, | |
**kwargs | |
) | |
## reconstruct from latent to pixel space | |
batch_images = model.decode_first_stage(samples, decode_bs=1, return_cpu=False) | |
batch_variants.append(batch_images) | |
## variants, batch, c, t, h, w | |
batch_variants = torch.stack(batch_variants) | |
return batch_variants.permute(1, 0, 2, 3, 4, 5), extra_cond | |
def run_inference(args, gpu_idx): | |
## model config | |
config = OmegaConf.load(args.base) | |
model_config = config.pop("model", OmegaConf.create()) | |
model = instantiate_from_config(model_config) | |
model = model.cuda(gpu_idx) | |
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!" | |
model = load_model_checkpoint(model, args.ckpt_path, args.adapter_ckpt) | |
model.eval() | |
## run over data | |
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" | |
## latent noise shape | |
h, w = args.height // 8, args.width // 8 | |
channels = model.channels | |
frames = model.temporal_length | |
noise_shape = [args.bs, channels, frames, h, w] | |
## inference | |
start = time.time() | |
prompt = args.prompt | |
video = load_video(args.video, args.frame_stride, video_size=(args.height, args.width), video_frames=16) | |
video = video.unsqueeze(0).to("cuda") | |
with torch.no_grad(): | |
batch_samples, batch_conds = adapter_guided_synthesis(model, prompt, video, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \ | |
args.unconditional_guidance_scale, args.unconditional_guidance_scale_temporal) | |
batch_samples = batch_samples[0] | |
os.makedirs(args.savedir, exist_ok=True) | |
filename = f"{args.prompt}_seed{args.seed}" | |
filename = filename.replace("/", "_slash_") if "/" in filename else filename | |
filename = filename.replace(" ", "_") if " " in filename else filename | |
tensor_to_mp4(video=batch_conds.detach().cpu(), savepath=os.path.join(args.savedir, f'{filename}_depth.mp4'), fps=10) | |
tensor_to_mp4(video=batch_samples.detach().cpu(), savepath=os.path.join(args.savedir, f'{filename}_sample.mp4'), fps=10) | |
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds") | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--savedir", type=str, default=None, help="results saving path") | |
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") | |
parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path") | |
parser.add_argument("--base", type=str, help="config (yaml) path") | |
parser.add_argument("--prompt", type=str, default=None, help="prompt string") | |
parser.add_argument("--video", type=str, default=None, help="video path") | |
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) | |
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) | |
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) | |
parser.add_argument("--bs", type=int, default=1, help="batch size for inference") | |
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") | |
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") | |
parser.add_argument("--frame_stride", type=int, default=-1, help="frame extracting from input video") | |
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") | |
parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance") | |
parser.add_argument("--seed", type=int, default=2023, help="seed for seed_everything") | |
return parser | |
if __name__ == '__main__': | |
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
print("@CoVideoGen cond-Inference: %s"%now) | |
parser = get_parser() | |
args = parser.parse_args() | |
seed_everything(args.seed) | |
rank = 0 | |
run_inference(args, rank) |