|
import os |
|
import gradio as gr |
|
import json |
|
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from llama_index.llms.llama_cpp import LlamaCPP |
|
from llama_index.llms.llama_cpp.llama_utils import ( |
|
messages_to_prompt, |
|
completion_to_prompt, |
|
) |
|
|
|
model_url = 'https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_K_M.gguf' |
|
llm = LlamaCPP( |
|
model_url=model_url, |
|
temperature=0.1, |
|
max_new_tokens=256, |
|
context_window=2048, |
|
model_kwargs={"n_gpu_layers": 1}, |
|
messages_to_prompt=messages_to_prompt, |
|
completion_to_prompt=completion_to_prompt, |
|
verbose=True, |
|
) |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5") |
|
|
|
def initialize_index(): |
|
"""Initialize the vector store index from JSON data.""" |
|
|
|
with open("dummy_users_with_tasks.json", "r") as file: |
|
json_data = json.load(file) |
|
|
|
|
|
documents = [] |
|
for user in json_data: |
|
tasks_summary = "\n".join( |
|
[f"Task: {task['title']} | Start: {task['start_date']} | Due: {task['due_date']}" |
|
for task in user["tasks"]] |
|
) |
|
doc_text = f"User: {user['name']} | Email: {user['email']}\nTasks:\n{tasks_summary}" |
|
documents.append(doc_text) |
|
|
|
|
|
index = VectorStoreIndex.from_documents( |
|
documents, |
|
embed_model=embeddings, |
|
) |
|
|
|
|
|
return index.as_query_engine(llm=llm) |
|
|
|
|
|
query_engine = initialize_index() |
|
|
|
def process_query( |
|
message: str, |
|
history: list[tuple[str, str]], |
|
) -> str: |
|
"""Process a query using the RAG system.""" |
|
try: |
|
|
|
response = query_engine.query( |
|
message, |
|
) |
|
return response |
|
except Exception as e: |
|
return f"Error processing query: {str(e)}" |
|
|
|
|
|
interface = gr.Interface( |
|
fn=process_query, |
|
inputs=["text", "state"], |
|
outputs="text", |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|