Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,8 @@ from PIL import Image
|
|
11 |
DIMS = (100, 100)
|
12 |
|
13 |
# Load the trained model
|
14 |
-
|
|
|
15 |
|
16 |
# Load MNIST examples
|
17 |
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
@@ -33,7 +34,7 @@ def preprocess_image(image):
|
|
33 |
# Function to make predictions
|
34 |
def predict(image):
|
35 |
image = preprocess_image(image)
|
36 |
-
prediction =
|
37 |
predicted_label = np.argmax(prediction)
|
38 |
return predicted_label, np.max(prediction)
|
39 |
|
@@ -42,7 +43,7 @@ def get_gradients(image, label):
|
|
42 |
image = tf.convert_to_tensor(image.reshape((1, 28, 28, 1)), dtype=tf.float32)
|
43 |
with tf.GradientTape() as tape:
|
44 |
tape.watch(image)
|
45 |
-
prediction =
|
46 |
loss = tf.keras.losses.categorical_crossentropy([label], prediction)
|
47 |
gradients = tape.gradient(loss, image)
|
48 |
return gradients.numpy().reshape(28, 28)
|
@@ -50,18 +51,18 @@ def get_gradients(image, label):
|
|
50 |
# Function to progressively mask image and observe changes
|
51 |
def progressively_mask_image(image, steps=100, increment=5):
|
52 |
image = preprocess_image(image).reshape(28, 28)
|
53 |
-
label = np.argmax(
|
54 |
gradients = get_gradients(image, to_categorical(label, 10))
|
55 |
|
56 |
modified_image = np.copy(image)
|
57 |
-
original_prediction =
|
58 |
original_label = np.argmax(original_prediction)
|
59 |
|
60 |
for i in range(1, steps + 1):
|
61 |
threshold = np.percentile(np.abs(gradients), 100 - i * increment)
|
62 |
mask = np.abs(gradients) > threshold
|
63 |
modified_image[mask] = 0
|
64 |
-
modified_prediction =
|
65 |
predicted_label = np.argmax(modified_prediction)
|
66 |
if predicted_label != original_label:
|
67 |
break
|
@@ -88,7 +89,7 @@ def fgsm_attack(image, epsilon, data_grad):
|
|
88 |
def create_adversarial_pattern(input_image, input_label):
|
89 |
with tf.GradientTape() as tape:
|
90 |
tape.watch(input_image)
|
91 |
-
prediction =
|
92 |
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(input_label, prediction)
|
93 |
gradient = tape.gradient(loss, input_image)
|
94 |
return gradient
|
|
|
11 |
DIMS = (100, 100)
|
12 |
|
13 |
# Load the trained model
|
14 |
+
mnist_model = load_model('mnist_model.h5')
|
15 |
+
adv_model = load_model('adv_model.h5')
|
16 |
|
17 |
# Load MNIST examples
|
18 |
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
|
34 |
# Function to make predictions
|
35 |
def predict(image):
|
36 |
image = preprocess_image(image)
|
37 |
+
prediction = mnist_model.predict(image)
|
38 |
predicted_label = np.argmax(prediction)
|
39 |
return predicted_label, np.max(prediction)
|
40 |
|
|
|
43 |
image = tf.convert_to_tensor(image.reshape((1, 28, 28, 1)), dtype=tf.float32)
|
44 |
with tf.GradientTape() as tape:
|
45 |
tape.watch(image)
|
46 |
+
prediction = mnist_model(image)
|
47 |
loss = tf.keras.losses.categorical_crossentropy([label], prediction)
|
48 |
gradients = tape.gradient(loss, image)
|
49 |
return gradients.numpy().reshape(28, 28)
|
|
|
51 |
# Function to progressively mask image and observe changes
|
52 |
def progressively_mask_image(image, steps=100, increment=5):
|
53 |
image = preprocess_image(image).reshape(28, 28)
|
54 |
+
label = np.argmax(mnist_model.predict(image.reshape(1, 28, 28, 1)))
|
55 |
gradients = get_gradients(image, to_categorical(label, 10))
|
56 |
|
57 |
modified_image = np.copy(image)
|
58 |
+
original_prediction = mnist_model.predict(image.reshape(1, 28, 28, 1))
|
59 |
original_label = np.argmax(original_prediction)
|
60 |
|
61 |
for i in range(1, steps + 1):
|
62 |
threshold = np.percentile(np.abs(gradients), 100 - i * increment)
|
63 |
mask = np.abs(gradients) > threshold
|
64 |
modified_image[mask] = 0
|
65 |
+
modified_prediction = mnist_model.predict(modified_image.reshape(1, 28, 28, 1))
|
66 |
predicted_label = np.argmax(modified_prediction)
|
67 |
if predicted_label != original_label:
|
68 |
break
|
|
|
89 |
def create_adversarial_pattern(input_image, input_label):
|
90 |
with tf.GradientTape() as tape:
|
91 |
tape.watch(input_image)
|
92 |
+
prediction = adv_model(input_image)
|
93 |
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(input_label, prediction)
|
94 |
gradient = tape.gradient(loss, input_image)
|
95 |
return gradient
|