AI-RESEARCHER-2024 commited on
Commit
db7c755
·
verified ·
1 Parent(s): f7519fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -11,7 +11,8 @@ from PIL import Image
11
  DIMS = (100, 100)
12
 
13
  # Load the trained model
14
- model = load_model('mnist_model.h5')
 
15
 
16
  # Load MNIST examples
17
  (x_train, y_train), (x_test, y_test) = mnist.load_data()
@@ -33,7 +34,7 @@ def preprocess_image(image):
33
  # Function to make predictions
34
  def predict(image):
35
  image = preprocess_image(image)
36
- prediction = model.predict(image)
37
  predicted_label = np.argmax(prediction)
38
  return predicted_label, np.max(prediction)
39
 
@@ -42,7 +43,7 @@ def get_gradients(image, label):
42
  image = tf.convert_to_tensor(image.reshape((1, 28, 28, 1)), dtype=tf.float32)
43
  with tf.GradientTape() as tape:
44
  tape.watch(image)
45
- prediction = model(image)
46
  loss = tf.keras.losses.categorical_crossentropy([label], prediction)
47
  gradients = tape.gradient(loss, image)
48
  return gradients.numpy().reshape(28, 28)
@@ -50,18 +51,18 @@ def get_gradients(image, label):
50
  # Function to progressively mask image and observe changes
51
  def progressively_mask_image(image, steps=100, increment=5):
52
  image = preprocess_image(image).reshape(28, 28)
53
- label = np.argmax(model.predict(image.reshape(1, 28, 28, 1)))
54
  gradients = get_gradients(image, to_categorical(label, 10))
55
 
56
  modified_image = np.copy(image)
57
- original_prediction = model.predict(image.reshape(1, 28, 28, 1))
58
  original_label = np.argmax(original_prediction)
59
 
60
  for i in range(1, steps + 1):
61
  threshold = np.percentile(np.abs(gradients), 100 - i * increment)
62
  mask = np.abs(gradients) > threshold
63
  modified_image[mask] = 0
64
- modified_prediction = model.predict(modified_image.reshape(1, 28, 28, 1))
65
  predicted_label = np.argmax(modified_prediction)
66
  if predicted_label != original_label:
67
  break
@@ -88,7 +89,7 @@ def fgsm_attack(image, epsilon, data_grad):
88
  def create_adversarial_pattern(input_image, input_label):
89
  with tf.GradientTape() as tape:
90
  tape.watch(input_image)
91
- prediction = model(input_image)
92
  loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(input_label, prediction)
93
  gradient = tape.gradient(loss, input_image)
94
  return gradient
 
11
  DIMS = (100, 100)
12
 
13
  # Load the trained model
14
+ mnist_model = load_model('mnist_model.h5')
15
+ adv_model = load_model('adv_model.h5')
16
 
17
  # Load MNIST examples
18
  (x_train, y_train), (x_test, y_test) = mnist.load_data()
 
34
  # Function to make predictions
35
  def predict(image):
36
  image = preprocess_image(image)
37
+ prediction = mnist_model.predict(image)
38
  predicted_label = np.argmax(prediction)
39
  return predicted_label, np.max(prediction)
40
 
 
43
  image = tf.convert_to_tensor(image.reshape((1, 28, 28, 1)), dtype=tf.float32)
44
  with tf.GradientTape() as tape:
45
  tape.watch(image)
46
+ prediction = mnist_model(image)
47
  loss = tf.keras.losses.categorical_crossentropy([label], prediction)
48
  gradients = tape.gradient(loss, image)
49
  return gradients.numpy().reshape(28, 28)
 
51
  # Function to progressively mask image and observe changes
52
  def progressively_mask_image(image, steps=100, increment=5):
53
  image = preprocess_image(image).reshape(28, 28)
54
+ label = np.argmax(mnist_model.predict(image.reshape(1, 28, 28, 1)))
55
  gradients = get_gradients(image, to_categorical(label, 10))
56
 
57
  modified_image = np.copy(image)
58
+ original_prediction = mnist_model.predict(image.reshape(1, 28, 28, 1))
59
  original_label = np.argmax(original_prediction)
60
 
61
  for i in range(1, steps + 1):
62
  threshold = np.percentile(np.abs(gradients), 100 - i * increment)
63
  mask = np.abs(gradients) > threshold
64
  modified_image[mask] = 0
65
+ modified_prediction = mnist_model.predict(modified_image.reshape(1, 28, 28, 1))
66
  predicted_label = np.argmax(modified_prediction)
67
  if predicted_label != original_label:
68
  break
 
89
  def create_adversarial_pattern(input_image, input_label):
90
  with tf.GradientTape() as tape:
91
  tape.watch(input_image)
92
+ prediction = adv_model(input_image)
93
  loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(input_label, prediction)
94
  gradient = tape.gradient(loss, input_image)
95
  return gradient