Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import numpy as np
|
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.models import load_model
|
5 |
from tensorflow.keras.utils import to_categorical
|
6 |
-
from sklearn.metrics import confusion_matrix
|
7 |
from tensorflow.keras.datasets import mnist
|
8 |
import cv2
|
9 |
|
@@ -72,35 +71,176 @@ def gradio_mask(image, steps, increment):
|
|
72 |
modified_image, original_label, predicted_label = progressively_mask_image(image, steps, increment)
|
73 |
return modified_image, f"Original Label: {original_label}, New Label: {predicted_label}"
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def main():
|
103 |
-
|
|
|
|
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
main()
|
|
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.models import load_model
|
5 |
from tensorflow.keras.utils import to_categorical
|
|
|
6 |
from tensorflow.keras.datasets import mnist
|
7 |
import cv2
|
8 |
|
|
|
71 |
modified_image, original_label, predicted_label = progressively_mask_image(image, steps, increment)
|
72 |
return modified_image, f"Original Label: {original_label}, New Label: {predicted_label}"
|
73 |
|
74 |
+
class GradioInterface:
|
75 |
+
def __init__(self):
|
76 |
+
self.preloaded_examples = self.preload_examples()
|
77 |
+
|
78 |
+
def preload_examples(self):
|
79 |
+
preloaded = {}
|
80 |
+
for model_name, example_dir in Config.EXAMPLES.items():
|
81 |
+
examples = [os.path.join(example_dir, img) for img in os.listdir(example_dir)]
|
82 |
+
preloaded[model_name] = examples
|
83 |
+
return preloaded
|
84 |
+
|
85 |
+
def create_interface(self):
|
86 |
+
app_styles = """
|
87 |
+
<style>
|
88 |
+
/* Global Styles */
|
89 |
+
body, #root {
|
90 |
+
font-family: Helvetica, Arial, sans-serif;
|
91 |
+
background-color: #1a1a1a;
|
92 |
+
color: #fafafa;
|
93 |
+
}
|
94 |
+
/* Header Styles */
|
95 |
+
.app-header {
|
96 |
+
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
|
97 |
+
padding: 24px;
|
98 |
+
border-radius: 8px;
|
99 |
+
margin-bottom: 24px;
|
100 |
+
text-align: center;
|
101 |
+
}
|
102 |
+
.app-title {
|
103 |
+
font-size: 48px;
|
104 |
+
margin: 0;
|
105 |
+
color: #fafafa;
|
106 |
+
}
|
107 |
+
.app-subtitle {
|
108 |
+
font-size: 24px;
|
109 |
+
margin: 8px 0 16px;
|
110 |
+
color: #fafafa;
|
111 |
+
}
|
112 |
+
.app-description {
|
113 |
+
font-size: 16px;
|
114 |
+
line-height: 1.6;
|
115 |
+
opacity: 0.8;
|
116 |
+
margin-bottom: 24px;
|
117 |
+
}
|
118 |
+
/* Button Styles */
|
119 |
+
.publication-links {
|
120 |
+
display: flex;
|
121 |
+
justify-content: center;
|
122 |
+
flex-wrap: wrap;
|
123 |
+
gap: 8px;
|
124 |
+
margin-bottom: 16px;
|
125 |
+
}
|
126 |
+
.publication-link {
|
127 |
+
display: inline-flex;
|
128 |
+
align-items: center;
|
129 |
+
padding: 8px 16px;
|
130 |
+
background-color: #333;
|
131 |
+
color: #fff !important;
|
132 |
+
text-decoration: none !important;
|
133 |
+
border-radius: 20px;
|
134 |
+
font-size: 14px;
|
135 |
+
transition: background-color 0.3s;
|
136 |
+
}
|
137 |
+
.publication-link:hover {
|
138 |
+
background-color: #555;
|
139 |
+
}
|
140 |
+
.publication-link i {
|
141 |
+
margin-right: 8px;
|
142 |
+
}
|
143 |
+
/* Content Styles */
|
144 |
+
.content-container {
|
145 |
+
background-color: #2a2a2a;
|
146 |
+
border-radius: 8px;
|
147 |
+
padding: 24px;
|
148 |
+
margin-bottom: 24px;
|
149 |
+
}
|
150 |
+
/* Image Styles */
|
151 |
+
.image-preview img {
|
152 |
+
max-width: 512px;
|
153 |
+
max-height: 512px;
|
154 |
+
margin: 0 auto;
|
155 |
+
border-radius: 4px;
|
156 |
+
display: block;
|
157 |
+
object-fit: contain;
|
158 |
+
}
|
159 |
+
/* Control Styles */
|
160 |
+
.control-panel {
|
161 |
+
background-color: #333;
|
162 |
+
padding: 16px;
|
163 |
+
border-radius: 8px;
|
164 |
+
margin-top: 16px;
|
165 |
+
}
|
166 |
+
/* Gradio Component Overrides */
|
167 |
+
.gr-button {
|
168 |
+
background-color: #4a4a4a;
|
169 |
+
color: #fff;
|
170 |
+
border: none;
|
171 |
+
border-radius: 4px;
|
172 |
+
padding: 8px 16px;
|
173 |
+
cursor: pointer;
|
174 |
+
transition: background-color 0.3s;
|
175 |
+
}
|
176 |
+
.gr-button:hover {
|
177 |
+
background-color: #5a5a5a;
|
178 |
+
}
|
179 |
+
.gr-input, .gr-dropdown {
|
180 |
+
background-color: #3a3a3a;
|
181 |
+
color: #fff;
|
182 |
+
border: 1px solid #4a4a4a;
|
183 |
+
border-radius: 4px;
|
184 |
+
padding: 8px;
|
185 |
+
}
|
186 |
+
.gr-form {
|
187 |
+
background-color: transparent;
|
188 |
+
}
|
189 |
+
.gr-panel {
|
190 |
+
border: none;
|
191 |
+
background-color: transparent;
|
192 |
+
}
|
193 |
+
/* Override any conflicting styles from Bulma */
|
194 |
+
.button.is-normal.is-rounded.is-dark {
|
195 |
+
color: #fff !important;
|
196 |
+
text-decoration: none !important;
|
197 |
+
}
|
198 |
+
</style>
|
199 |
+
"""
|
200 |
+
|
201 |
+
header_html = f"""
|
202 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
|
203 |
+
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
|
204 |
+
{app_styles}
|
205 |
+
<div class="app-header">
|
206 |
+
<h1 class="app-title">Attribution Based Confidence Metric for Neural Networks</h1>
|
207 |
+
<h2 class="app-subtitle">Steven Fernandes, Ph.D.</h2>
|
208 |
+
</div>
|
209 |
+
"""
|
210 |
+
|
211 |
+
js_func = """
|
212 |
+
function refresh() {
|
213 |
+
const url = new URL(window.location);
|
214 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
215 |
+
url.searchParams.set('__theme', 'dark');
|
216 |
+
window.location.href = url.href;
|
217 |
+
}
|
218 |
+
}
|
219 |
+
"""
|
220 |
+
|
221 |
+
with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
|
222 |
+
gr.HTML(header_html)
|
223 |
+
with gr.Row(elem_classes="content-container"):
|
224 |
+
with gr.Column():
|
225 |
+
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
|
226 |
+
steps_input = gr.Slider(minimum=1, maximum=100, label="Steps", step=1, value=100)
|
227 |
+
increment_input = gr.Slider(minimum=1, maximum=20, label="Increment", step=1, value=5)
|
228 |
+
with gr.Column():
|
229 |
+
result = gr.Image(label="Result", elem_classes="image-preview")
|
230 |
+
run_button = gr.Button("Run", elem_classes="gr-button")
|
231 |
+
|
232 |
+
run_button.click(
|
233 |
+
fn=gradio_mask,
|
234 |
+
inputs=[input_image, steps_input, increment_input],
|
235 |
+
outputs=[result, gr.Textbox(label="Prediction Details")],
|
236 |
+
)
|
237 |
+
|
238 |
+
return demo
|
239 |
|
240 |
def main():
|
241 |
+
interface = GradioInterface()
|
242 |
+
demo = interface.create_interface()
|
243 |
+
demo.launch(debug=True)
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
main()
|