AI-trainer1 commited on
Commit
2f1ed37
·
verified ·
1 Parent(s): 329bb1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -12,8 +12,8 @@ from langchain_core.prompts import ChatPromptTemplate
12
  import os
13
  from dotenv import load_dotenv
14
  from helper import SYSTEM_PROMPT
15
- # from langchain_google_genai import GoogleGenerativeAIEmbeddings
16
- from langchain.embeddings import HuggingFaceEmbeddings # open source free embedding
17
  load_dotenv()
18
 
19
 
@@ -37,17 +37,17 @@ class PDFQAProcessor:
37
 
38
  question_answer_chain = create_stuff_documents_chain(llm, prompt)
39
 
40
- EMBEDDING_MODEL = "intfloat/e5-large-v2"
41
 
42
- embeddings = HuggingFaceEmbeddings(
43
- model_name=EMBEDDING_MODEL,
44
- model_kwargs={'device': 'cpu'},
45
- encode_kwargs={'normalize_embeddings': True}
46
- )
47
-
48
- # embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
49
- CHUNK_SIZE = 700
50
- CHUNK_OVERLAP = 150
51
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE,chunk_overlap = CHUNK_OVERLAP)
52
  # persist_directory="./chroma_db"
53
 
@@ -81,7 +81,7 @@ class PDFQAProcessor:
81
  splits,
82
  self.embeddings
83
  )
84
- self.retriever = self.vectorstore.as_retriever(search_kwargs={"k": 10})
85
  return "PDFs processed successfully! Ask your questions now."
86
 
87
  except Exception as e:
 
12
  import os
13
  from dotenv import load_dotenv
14
  from helper import SYSTEM_PROMPT
15
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
16
+ # from langchain.embeddings import HuggingFaceEmbeddings # open source free embedding
17
  load_dotenv()
18
 
19
 
 
37
 
38
  question_answer_chain = create_stuff_documents_chain(llm, prompt)
39
 
40
+ # EMBEDDING_MODEL = "intfloat/e5-large-v2"
41
 
42
+ # embeddings = HuggingFaceEmbeddings(
43
+ # model_name=EMBEDDING_MODEL,
44
+ # model_kwargs={'device': 'cpu'},
45
+ # encode_kwargs={'normalize_embeddings': True}
46
+ # )
47
+
48
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
49
+ CHUNK_SIZE = 400
50
+ CHUNK_OVERLAP = 50
51
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE,chunk_overlap = CHUNK_OVERLAP)
52
  # persist_directory="./chroma_db"
53
 
 
81
  splits,
82
  self.embeddings
83
  )
84
+ self.retriever = self.vectorstore.as_retriever(search_kwargs={"k": 18})
85
  return "PDFs processed successfully! Ask your questions now."
86
 
87
  except Exception as e: