Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,8 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
12 |
import os
|
13 |
from dotenv import load_dotenv
|
14 |
from helper import SYSTEM_PROMPT
|
15 |
-
|
16 |
-
from langchain.embeddings import HuggingFaceEmbeddings # open source free embedding
|
17 |
load_dotenv()
|
18 |
|
19 |
|
@@ -37,17 +37,17 @@ class PDFQAProcessor:
|
|
37 |
|
38 |
question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
39 |
|
40 |
-
EMBEDDING_MODEL = "intfloat/e5-large-v2"
|
41 |
|
42 |
-
embeddings = HuggingFaceEmbeddings(
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
)
|
47 |
-
|
48 |
-
|
49 |
-
CHUNK_SIZE =
|
50 |
-
CHUNK_OVERLAP =
|
51 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE,chunk_overlap = CHUNK_OVERLAP)
|
52 |
# persist_directory="./chroma_db"
|
53 |
|
@@ -81,7 +81,7 @@ class PDFQAProcessor:
|
|
81 |
splits,
|
82 |
self.embeddings
|
83 |
)
|
84 |
-
self.retriever = self.vectorstore.as_retriever(search_kwargs={"k":
|
85 |
return "PDFs processed successfully! Ask your questions now."
|
86 |
|
87 |
except Exception as e:
|
|
|
12 |
import os
|
13 |
from dotenv import load_dotenv
|
14 |
from helper import SYSTEM_PROMPT
|
15 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
16 |
+
# from langchain.embeddings import HuggingFaceEmbeddings # open source free embedding
|
17 |
load_dotenv()
|
18 |
|
19 |
|
|
|
37 |
|
38 |
question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
39 |
|
40 |
+
# EMBEDDING_MODEL = "intfloat/e5-large-v2"
|
41 |
|
42 |
+
# embeddings = HuggingFaceEmbeddings(
|
43 |
+
# model_name=EMBEDDING_MODEL,
|
44 |
+
# model_kwargs={'device': 'cpu'},
|
45 |
+
# encode_kwargs={'normalize_embeddings': True}
|
46 |
+
# )
|
47 |
+
|
48 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
49 |
+
CHUNK_SIZE = 400
|
50 |
+
CHUNK_OVERLAP = 50
|
51 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE,chunk_overlap = CHUNK_OVERLAP)
|
52 |
# persist_directory="./chroma_db"
|
53 |
|
|
|
81 |
splits,
|
82 |
self.embeddings
|
83 |
)
|
84 |
+
self.retriever = self.vectorstore.as_retriever(search_kwargs={"k": 18})
|
85 |
return "PDFs processed successfully! Ask your questions now."
|
86 |
|
87 |
except Exception as e:
|