AI-trainer1 commited on
Commit
da33654
·
verified ·
1 Parent(s): 946c2d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -52,20 +52,21 @@
52
  # interface.launch()
53
 
54
  import gradio as gr
 
55
  import torch
56
 
57
  # Check if GPU is available
58
- device = "cuda" if torch.cuda.is_available() else "cpu"
59
 
60
- # Load models on GPU if available, otherwise fallback to CPU
61
- model1 = gr.load("models/Jonny001/NSFW_master", device=device) # GPU
62
- model2 = gr.load("models/Jonny001/Alita-v1", device=device) # GPU
63
- model3 = gr.load("models/lexa862/NSFWmodel", device=device) # GPU
64
- model4 = gr.load("models/Keltezaa/flux_pussy_NSFW", device=device) # GPU
65
- model5 = gr.load("models/prashanth970/flux-lora-uncensored", device=device) # GPU
66
 
 
67
  def generate_images(text, selected_model):
68
- # Model selection logic
69
  if selected_model == "Model 1 (NSFW Master)":
70
  model = model1
71
  elif selected_model == "Model 2 (Alita)":
@@ -78,14 +79,14 @@ def generate_images(text, selected_model):
78
  model = model5
79
  else:
80
  return "Invalid model selection."
81
-
82
- # Generate two variations for each input prompt
83
  results = []
84
  for i in range(2):
85
  modified_text = f"{text} variation {i+1}"
86
  result = model(modified_text)
87
  results.append(result)
88
-
89
  return results
90
 
91
  # Gradio interface
@@ -108,4 +109,5 @@ interface = gr.Interface(
108
  cache_examples=False,
109
  )
110
 
 
111
  interface.launch()
 
52
  # interface.launch()
53
 
54
  import gradio as gr
55
+ from transformers import pipeline
56
  import torch
57
 
58
  # Check if GPU is available
59
+ device = 0 if torch.cuda.is_available() else -1
60
 
61
+ # Load models using transformers
62
+ model1 = pipeline("text-to-image", model="Jonny001/NSFW_master", device=device)
63
+ model2 = pipeline("text-to-image", model="Jonny001/Alita-v1", device=device)
64
+ model3 = pipeline("text-to-image", model="lexa862/NSFWmodel", device=device)
65
+ model4 = pipeline("text-to-image", model="Keltezaa/flux_pussy_NSFW", device=device)
66
+ model5 = pipeline("text-to-image", model="prashanth970/flux-lora-uncensored", device=device)
67
 
68
+ # Function to generate images
69
  def generate_images(text, selected_model):
 
70
  if selected_model == "Model 1 (NSFW Master)":
71
  model = model1
72
  elif selected_model == "Model 2 (Alita)":
 
79
  model = model5
80
  else:
81
  return "Invalid model selection."
82
+
83
+ # Generate images
84
  results = []
85
  for i in range(2):
86
  modified_text = f"{text} variation {i+1}"
87
  result = model(modified_text)
88
  results.append(result)
89
+
90
  return results
91
 
92
  # Gradio interface
 
109
  cache_examples=False,
110
  )
111
 
112
+ # Launch the interface
113
  interface.launch()