import gradio as gr from transformers import pipeline import torch # Maximize CPU usage torch.set_num_threads(torch.get_num_threads() * 2) model1 = gr.load("models/Jonny001/NSFW_master") model2 = gr.load("models/Jonny001/Alita-v1") model3 = gr.load("models/lexa862/NSFWmodel") model4 = gr.load("models/Keltezaa/flux_pussy_NSFW") model5 = gr.load("models/prashanth970/flux-lora-uncensored") def generate_images(text, selected_model): if selected_model == "Model 1 (NSFW Master)": model = model1 elif selected_model == "Model 2 (Alita)": model = model2 elif selected_model == "Model 3 (Lexa NSFW)": model = model3 elif selected_model == "Model 4 (Flux NSFW)": model = model4 elif selected_model == "Model 5 (Lora Uncensored)": model = model5 else: return "Invalid model selection." results = [] for i in range(3): modified_text = f"{text} variation {i+1}" result = model(modified_text) results.append(result) return results interface = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(label="Type here your imagination:", placeholder="Type your prompt..."), gr.Radio( ["Model 1 (NSFW Master)", "Model 2 (Alita)", "Model 3 (Lexa NSFW)", "Model 4 (Flux NSFW)", "Model 5 (Lora Uncensored)"], label="Select Model (Try All Models & Get Different Results)", value="Model 1 (NSFW Master)", ), ], outputs=[ gr.Image(label="Generated Image 1"), gr.Image(label="Generated Image 2"), gr.Image(label="Generated Image 3"), ], theme="Yntec/HaleyCH_Theme_Orange", description="⚠ Sorry for the inconvenience. The models are currently running on the CPU, which might affect performance. We appreciate your understanding.", cache_examples=False, ) interface.launch() # import gradio as gr # from transformers import pipeline # import torch # # Maximize CPU usage # torch.set_num_threads(torch.get_num_threads() * 2) # # Load models using Hugging Face pipelines # model1 = pipeline("text-to-image", model="Jonny001/NSFW_master", device_map="auto") # model2 = pipeline("text-to-image", model="Jonny001/Alita-v1", device_map="auto") # model3 = pipeline("text-to-image", model="lexa862/NSFWmodel", device_map="auto") # model4 = pipeline("text-to-image", model="Keltezaa/flux_pussy_NSFW", device_map="auto") # model5 = pipeline("text-to-image", model="prashanth970/flux-lora-uncensored", device_map="auto") # # Function to generate images # def generate_images(text, selected_model): # models = { # "Model 1 (NSFW Master)": model1, # "Model 2 (Alita)": model2, # "Model 3 (Lexa NSFW)": model3, # "Model 4 (Flux NSFW)": model4, # "Model 5 (Lora Uncensored)": model5, # } # model = models.get(selected_model, model1) # results = [] # for i in range(3): # modified_text = f"{text} variation {i+1}" # result = model(modified_text) # results.append(result) # return results # # Gradio interface # interface = gr.Interface( # fn=generate_images, # inputs=[ # gr.Textbox(label="Type here your imagination:", placeholder="Type your prompt..."), # gr.Radio( # ["Model 1 (NSFW Master)", "Model 2 (Alita)", "Model 3 (Lexa NSFW)", "Model 4 (Flux NSFW)", "Model 5 (Lora Uncensored)"], # label="Select Model (Try All Models & Get Different Results)", # value="Model 1 (NSFW Master)", # ), # ], # outputs=[ # gr.Image(label="Generated Image 1"), # gr.Image(label="Generated Image 2"), # gr.Image(label="Generated Image 3"), # ], # theme="Yntec/HaleyCH_Theme_Orange", # description="⚠ Models are running on CPU for optimized performance. Your patience is appreciated!", # cache_examples=False, # ) # # Launch the interface # interface.launch()