File size: 4,034 Bytes
11bbc55
2d11d60
f3efe05
c76398e
7dd3a10
f3efe05
c76398e
f3efe05
c76398e
f3efe05
c76398e
f3efe05
 
c76398e
 
 
 
f3efe05
 
7dd3a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3efe05
 
 
 
 
 
 
 
 
 
c76398e
f3efe05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05dc9f
7dd3a10
 
f3efe05
 
 
7dd3a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3efe05
7dd3a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3efe05
7dd3a10
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import gradio as gr
import base64
import prompts
import json
from openai import OpenAI
from dotenv import load_dotenv

load_dotenv()
client = OpenAI()
PROMPT = prompts.SINGLE_QCM_PROMPT


# Function to encode the image
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


def load_qcm(file_path):
    try:
        with open(file_path, "r", encoding="utf-8") as file:
            return json.load(file)
    except json.JSONDecodeError as e:
        print(f"Error decoding JSON: {e}")
        return {}


def get_answers(qcm):  # qcm is in json format
    answers = [answer["value"] for answer in qcm["Answers"]]
    correct_answers = [
        answer["value"] for answer in qcm["Answers"] if answer["correct"]
    ]
    md_answers = "\n".join([f"* {answer}" for answer in answers])
    md_correct_answers = "\n".join([f"* {answer}" for answer in correct_answers])
    return {"md_answers": md_answers, "md_correct_answers": md_correct_answers}


def process(image_path):
    try:
        response = client.chat.completions.create(
            model="gpt-4o",
            # response_format={ "type": "json_object" }, # si nécessaire
            messages=[
                # {"role": "system", "content": "You are a helpful assistant designed to output JSON."},
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": PROMPT},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{encode_image(image_path)}"
                            },
                        },
                    ],
                }
            ],
            temperature=0.2,
            #    max_tokens=256,
            #    top_p=1,
            #    frequency_penalty=0,
            #    presence_penalty=0
        )
        #        print(response["usage"]["total_tokens"])
        json_output = response.choices[0].message.content
        return json.loads(json_output)

    except Exception as e:
        print(f"an error occurred : {e}")
        return {"error": str(e)}, str(e)


with gr.Blocks() as demo:

    with gr.Row():
        image = gr.Image(label="Image", type="filepath")
        with gr.Column():
            submit_btn = gr.Button("Soumettre")
            progress = gr.Textbox(label="Traitement")
            with gr.Accordion(
                open=False,
            ):
                gr_json_output = gr.JSON(label="json output")

    with gr.Tab(label="QCM", visible=False) as gr_qcm_column:

        gr_question = gr.Textbox(label="Question")
        with gr.Accordion(label="Réponses possibles"):
            gr_answers = gr.Markdown()
        gr_hint = gr.Textbox(label="Aide à la réponse")
        with gr.Accordion(label="Bonnes réponses"):
            gr_correct_answers = gr.Markdown()
        gr_explanation = gr.Textbox(label="Explication")

    def submit(image_path):

        qcm = process(image_path)
        # qcm = load_qcm("questions.json")
        ga = get_answers(qcm)

        return {
            progress: "Terminé !",
            gr_qcm_column: gr.Tab(visible=True),
            gr_json_output: qcm,
            gr_question: qcm["Question"],
            gr_answers: ga["md_answers"],
            gr_hint: qcm["hint"],
            gr_correct_answers: ga["md_correct_answers"],
            gr_explanation: qcm["explanation"],
        }

    submit_btn.click(
        fn=submit,
        inputs=image,
        outputs=[
            progress,
            gr_qcm_column,
            gr_json_output,
            gr_question,
            gr_hint,
            gr_answers,
            gr_correct_answers,
            gr_explanation,
        ],
        api_name="submit",
    )

if __name__ == "__main__":
    authorized_users = [("test", os.environ["TEST_PASSWORD"])]
    demo.launch(auth=authorized_users)