update
Browse files- app.py +167 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,8 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
return {"Hello": "World!"}
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import json
|
3 |
+
import multiprocessing as mp
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass, asdict
|
6 |
+
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
from fastapi import FastAPI
|
11 |
+
from pyproj import Proj
|
12 |
+
|
13 |
+
import adloc
|
14 |
+
|
15 |
+
from adloc.eikonal2d import init_eikonal2d
|
16 |
+
from adloc.sacloc2d import ADLoc
|
17 |
+
from adloc.utils import invert_location, invert_location_iter
|
18 |
|
19 |
app = FastAPI()
|
20 |
|
21 |
+
|
22 |
@app.get("/")
|
23 |
def greet_json():
|
24 |
return {"Hello": "World!"}
|
25 |
|
26 |
+
|
27 |
+
@app.post("/predict/")
|
28 |
+
def predict(picks: dict, stations: dict, config: dict):
|
29 |
+
picks = picks["data"]
|
30 |
+
stations = stations["data"]
|
31 |
+
picks = pd.DataFrame(picks)
|
32 |
+
picks["phase_time"] = pd.to_datetime(picks["phase_time"])
|
33 |
+
stations = pd.DataFrame(stations)
|
34 |
+
picks_, events_ = run_adloc(picks, stations, config)
|
35 |
+
picks_ = picks_.to_dict(orient="records")
|
36 |
+
events_ = events_.to_dict(orient="records")
|
37 |
+
|
38 |
+
return {"picks": picks_, "events": events_}
|
39 |
+
|
40 |
+
|
41 |
+
def set_config(region="ridgecrest"):
|
42 |
+
|
43 |
+
|
44 |
+
config = {
|
45 |
+
"min_picks": 8,
|
46 |
+
"min_picks_ratio": 0.2,
|
47 |
+
"max_residual_time": 1.0,
|
48 |
+
"max_residual_amplitude": 1.0,
|
49 |
+
"min_score": 0.6,
|
50 |
+
"min_s_picks": 2,
|
51 |
+
"min_p_picks": 2,
|
52 |
+
"use_amplitude": False,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
# ## Domain
|
57 |
+
if region.lower() == "ridgecrest":
|
58 |
+
config.update(
|
59 |
+
{
|
60 |
+
"region": "ridgecrest",
|
61 |
+
"minlongitude": -118.004,
|
62 |
+
"maxlongitude": -117.004,
|
63 |
+
"minlatitude": 35.205,
|
64 |
+
"maxlatitude": 36.205,
|
65 |
+
"mindepth_km": 0.0,
|
66 |
+
"maxdepth_km": 30.0,
|
67 |
+
}
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
lon0 = (config["minlongitude"] + config["maxlongitude"]) / 2
|
72 |
+
lat0 = (config["minlatitude"] + config["maxlatitude"]) / 2
|
73 |
+
proj = Proj(f"+proj=sterea +lon_0={lon0} +lat_0={lat0} +units=km")
|
74 |
+
xmin, ymin = proj(config["minlongitude"], config["minlatitude"])
|
75 |
+
xmax, ymax = proj(config["maxlongitude"], config["maxlatitude"])
|
76 |
+
zmin, zmax = config["mindepth_km"], config["maxdepth_km"]
|
77 |
+
xlim_km = (xmin, xmax)
|
78 |
+
ylim_km = (ymin, ymax)
|
79 |
+
zlim_km = (zmin, zmax)
|
80 |
+
|
81 |
+
config.update(
|
82 |
+
{
|
83 |
+
"xlim_km": xlim_km,
|
84 |
+
"ylim_km": ylim_km,
|
85 |
+
"zlim_km": zlim_km,
|
86 |
+
"proj": proj,
|
87 |
+
}
|
88 |
+
)
|
89 |
+
|
90 |
+
## Eikonal for 1D velocity model
|
91 |
+
zz = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 30.0]
|
92 |
+
vp = [4.746, 4.793, 4.799, 5.045, 5.721, 5.879, 6.504, 6.708, 6.725, 7.800]
|
93 |
+
vs = [2.469, 2.470, 2.929, 2.930, 3.402, 3.403, 3.848, 3.907, 3.963, 4.500]
|
94 |
+
h = 0.3
|
95 |
+
|
96 |
+
vel = {"Z": zz, "P": vp, "S": vs}
|
97 |
+
eikonal = {
|
98 |
+
"vel": vel,
|
99 |
+
"h": h,
|
100 |
+
"xlim_km": xlim_km,
|
101 |
+
"ylim_km": ylim_km,
|
102 |
+
"zlim_km": zlim_km,
|
103 |
+
}
|
104 |
+
eikonal = init_eikonal2d(eikonal)
|
105 |
+
config["eikonal"] = eikonal
|
106 |
+
|
107 |
+
config["bfgs_bounds"] = (
|
108 |
+
(xlim_km[0] - 1, xlim_km[1] + 1), # x
|
109 |
+
(ylim_km[0] - 1, ylim_km[1] + 1), # y
|
110 |
+
(0, zlim_km[1] + 1), # z
|
111 |
+
(None, None), # t
|
112 |
+
)
|
113 |
+
|
114 |
+
config["event_index"] = 0
|
115 |
+
|
116 |
+
return config
|
117 |
+
|
118 |
+
config = set_config()
|
119 |
+
|
120 |
+
|
121 |
+
# %%
|
122 |
+
def run_adloc(picks, stations, config_):
|
123 |
+
|
124 |
+
|
125 |
+
# %%
|
126 |
+
config.update(config_)
|
127 |
+
|
128 |
+
proj = config["proj"]
|
129 |
+
|
130 |
+
# %%
|
131 |
+
stations[["x_km", "y_km"]] = stations.apply(
|
132 |
+
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
|
133 |
+
)
|
134 |
+
stations["z_km"] = stations["elevation_m"].apply(lambda x: -x / 1e3)
|
135 |
+
|
136 |
+
|
137 |
+
# %%
|
138 |
+
mapping_phase_type_int = {"P": 0, "S": 1}
|
139 |
+
picks["phase_type"] = picks["phase_type"].map(mapping_phase_type_int)
|
140 |
+
if "phase_amplitude" in picks.columns:
|
141 |
+
picks["phase_amplitude"] = picks["phase_amplitude"].apply(lambda x: np.log10(x) + 2.0) # convert to log10(cm/s)
|
142 |
+
|
143 |
+
# %%
|
144 |
+
# reindex in case the index does not start from 0 or is not continuous
|
145 |
+
stations["idx_sta"] = np.arange(len(stations))
|
146 |
+
picks = picks.merge(stations[["station_id", "idx_sta"]], on="station_id")
|
147 |
+
picks["idx_eve"] = config["event_index"]
|
148 |
+
|
149 |
+
# %%
|
150 |
+
estimator = ADLoc(config, stations=stations[["x_km", "y_km", "z_km"]].values, eikonal=config["eikonal"])
|
151 |
+
|
152 |
+
# %%
|
153 |
+
picks, events = invert_location_iter(picks, stations, config, estimator, events_init=None, iter=0)
|
154 |
+
|
155 |
+
if (picks is None) or (events is None):
|
156 |
+
return None, None
|
157 |
+
|
158 |
+
# %%
|
159 |
+
if "event_index" not in events.columns:
|
160 |
+
events["event_index"] = events.merge(picks[["idx_eve", "event_index"]], on="idx_eve")["event_index"]
|
161 |
+
events[["longitude", "latitude"]] = events.apply(
|
162 |
+
lambda x: pd.Series(proj(x["x_km"], x["y_km"], inverse=True)), axis=1
|
163 |
+
)
|
164 |
+
events["depth_km"] = events["z_km"]
|
165 |
+
events.drop(["idx_eve", "x_km", "y_km", "z_km"], axis=1, inplace=True, errors="ignore")
|
166 |
+
events.sort_values(["time"], inplace=True)
|
167 |
+
|
168 |
+
picks.rename({"mask": "adloc_mask", "residual_s": "adloc_residual_s"}, axis=1, inplace=True)
|
169 |
+
picks["phase_type"] = picks["phase_type"].map({0: "P", 1: "S"})
|
170 |
+
picks.drop(["idx_eve", "idx_sta"], axis=1, inplace=True, errors="ignore")
|
171 |
+
picks.sort_values(["phase_time"], inplace=True)
|
172 |
+
|
173 |
+
return picks, events
|
174 |
+
|
175 |
+
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
|
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
3 |
+
adloc
|