File size: 5,194 Bytes
81c99dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import logging
import multiprocessing
import os
import time
from functools import partial

import numpy as np
import tensorflow as tf
from tqdm import tqdm

from data_reader import DataReader_pred, normalize_batch
from model import UNet
from util import *

tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)


def read_args():
    """Returns args"""

    parser = argparse.ArgumentParser()

    parser.add_argument("--format", default="numpy", type=str, help="Input data format: numpy or mseed")
    parser.add_argument("--batch_size", default=20, type=int, help="Batch size")
    parser.add_argument("--output_dir", default="output", help="Output directory (default: output)")
    parser.add_argument("--model_dir", default=None, help="Checkpoint directory (default: None)")
    parser.add_argument("--sampling_rate", default=100, type=int, help="sampling rate of pred data")
    parser.add_argument("--data_dir", default="./Dataset/pred/", help="Input file directory")
    parser.add_argument("--data_list", default="./Dataset/pred.csv", help="Input csv file")
    parser.add_argument("--plot_figure", action="store_true", help="If plot figure")
    parser.add_argument("--save_signal", action="store_true", help="If save denoised signal")
    parser.add_argument("--save_noise", action="store_true", help="If save denoised noise")

    args = parser.parse_args()
    return args


def pred_fn(args, data_reader, figure_dir=None, result_dir=None, log_dir=None):
    current_time = time.strftime("%y%m%d-%H%M%S")
    if log_dir is None:
        log_dir = os.path.join(args.log_dir, "pred", current_time)
    logging.info("Pred log: %s" % log_dir)
    # logging.info("Dataset size: {}".format(data_reader.num_data))
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    if args.plot_figure:
        figure_dir = os.path.join(log_dir, 'figures')
        os.makedirs(figure_dir, exist_ok=True)
    if args.save_signal or args.save_noise:
        result_dir = os.path.join(log_dir, 'results')
        os.makedirs(result_dir, exist_ok=True)

    with tf.compat.v1.name_scope('Input_Batch'):
        data_batch = data_reader.dataset(args.batch_size)

    # model = UNet(input_batch=data_batch, mode='pred')
    model = UNet(mode='pred')
    sess_config = tf.compat.v1.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    # sess_config.log_device_placement = False

    with tf.compat.v1.Session(config=sess_config) as sess:

        saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
        init = tf.compat.v1.global_variables_initializer()
        sess.run(init)

        latest_check_point = tf.train.latest_checkpoint(args.model_dir)
        logging.info(f"restoring models: {latest_check_point}")
        saver.restore(sess, latest_check_point)

        if args.plot_figure:
            num_pool = multiprocessing.cpu_count()
        else:
            num_pool = 2
        multiprocessing.set_start_method('spawn')
        pool = multiprocessing.Pool(num_pool)
        for _ in tqdm(range(0, data_reader.n_signal, args.batch_size), desc="Pred"):
            X_batch, fname_batch, t0_batch = sess.run(data_batch)
            nbt, nch, nst, nf, nt, nimg = X_batch.shape
            X_batch_ = np.reshape(X_batch, [nbt * nch * nst, nf, nt, nimg])
            X_batch_ = normalize_batch(X_batch_)
            preds_batch = sess.run(
                model.preds,
                feed_dict={model.X: X_batch_, model.drop_rate: 0, model.is_training: False},
            )
            preds_batch = np.reshape(preds_batch, [nbt, nch, nst, nf, nt, preds_batch.shape[-1]])
            # preds_batch, X_batch, ratio_batch, fname_batch = sess.run(
            #     [model.preds, data_batch[0], data_batch[1], data_batch[2]],
            #     feed_dict={model.drop_rate: 0, model.is_training: False},
            # )

            if args.save_signal or args.save_noise:
                save_results(
                    preds_batch,
                    X_batch,
                    fname=[x.decode() for x in fname_batch],
                    t0=[x.decode() for x in t0_batch],
                    save_signal=args.save_signal,
                    save_noise=args.save_noise,
                    result_dir=result_dir,
                )

            if args.plot_figure:
                pool.starmap(
                    partial(
                        plot_figures,
                        figure_dir=figure_dir,
                    ),
                    zip(preds_batch, X_batch, [x.decode() for x in fname_batch]),
                )

        pool.close()

    return 0


def main(args):

    logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)

    with tf.compat.v1.name_scope('create_inputs'):
        data_reader = DataReader_pred(
            format=args.format, signal_dir=args.data_dir, signal_list=args.data_list, sampling_rate=args.sampling_rate
        )
    logging.info("Dataset Size: {}".format(data_reader.n_signal))
    pred_fn(args, data_reader, log_dir=args.output_dir)

    return 0


if __name__ == '__main__':
    args = read_args()
    main(args)