Spaces:
Running
Running
File size: 21,888 Bytes
81c99dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
#import warnings
#warnings.filterwarnings('ignore', category=FutureWarning)
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import argparse
import os
import time
import logging
from model import UNet
from data_reader import *
from util import *
from tqdm import tqdm
import multiprocessing
from functools import partial
def read_args():
"""Returns args"""
parser = argparse.ArgumentParser()
parser.add_argument("--mode",
default="train",
help="train/valid/test/debug (default: train)")
parser.add_argument("--epochs",
default=10,
type=int,
help="Number of epochs (default: 10)")
parser.add_argument("--batch_size",
default=20,
type=int,
help="Batch size (default: 20)")
parser.add_argument("--learning_rate",
default=0.001,
type=float,
help="learning rate (default: 0.001)")
parser.add_argument("--decay_step",
default=-1,
type=int,
help="decay step (default: -1)")
parser.add_argument("--decay_rate",
default=0.9,
type=float,
help="decay rate (default: 0.9)")
parser.add_argument("--momentum",
default=0.9,
type=float,
help="momentum (default: 0.9)")
parser.add_argument("--filters_root",
default=8,
type=int,
help="filters root (default: 8)")
parser.add_argument("--depth",
default=6,
type=int,
help="depth (default: 6)")
parser.add_argument("--kernel_size",
nargs="+",
type=int,
default=[3, 3],
help="kernel size (default: [3, 3]")
parser.add_argument("--pool_size",
nargs="+",
type=int,
default=[2, 2],
help="pool size (default: [2, 2]")
parser.add_argument("--drop_rate",
default=0,
type=float,
help="drop out rate (default: 0)")
parser.add_argument("--dilation_rate",
nargs="+",
type=int,
default=[1, 1],
help="dilation_rate (default: [1, 1]")
parser.add_argument("--loss_type",
default="cross_entropy",
help="loss type: cross_entropy, IOU, mean_squared (default: cross_entropy)")
parser.add_argument("--weight_decay",
default=0,
type=float,
help="weight decay (default: 0)")
parser.add_argument("--optimizer",
default="adam",
help="optimizer: adam, momentum (default: adam)")
parser.add_argument("--summary",
default=True,
type=bool,
help="summary (default: True)")
parser.add_argument("--class_weights",
nargs="+",
default=[1, 1],
type=float,
help="class weights (default: [1, 1]")
parser.add_argument("--log_dir",
default="log",
help="Tensorboard log directory (default: log)")
parser.add_argument("--model_dir",
default=None,
help="Checkpoint directory")
parser.add_argument("--num_plots",
default=10,
type=int,
help="plotting trainning result (default: 10)")
parser.add_argument("--input_length",
default=None,
type=int,
help="input length")
parser.add_argument("--sampling_rate",
default=100,
type=int,
help="sampling rate of pred data in Hz (default: 100)")
parser.add_argument("--train_signal_dir",
default="./Dataset/train/",
help="Input file directory (default: ./Dataset/train/)")
parser.add_argument("--train_signal_list",
default="./Dataset/train.csv",
help="Input csv file (default: ./Dataset/train.csv)")
parser.add_argument("--train_noise_dir",
default="./Dataset/train/",
help="Input file directory (default: ./Dataset/train/)")
parser.add_argument("--train_noise_list",
default="./Dataset/train.csv",
help="Input csv file (default: ./Dataset/train.csv)")
parser.add_argument("--valid_signal_dir",
default="./Dataset/",
help="Input file directory (default: ./Dataset/)")
parser.add_argument("--valid_signal_list",
default=None,
help="Input csv file")
parser.add_argument("--valid_noise_dir",
default="./Dataset/",
help="Input file directory (default: ./Dataset/)")
parser.add_argument("--valid_noise_list",
default=None,
help="Input csv file")
parser.add_argument("--data_dir",
default="./Dataset/pred/",
help="Input file directory (default: ./Dataset/pred/)")
parser.add_argument("--data_list",
default="./Dataset/pred.csv",
help="Input csv file (default: ./Dataset/pred.csv)")
parser.add_argument("--output_dir",
default=None,
help="Output directory")
parser.add_argument("--fpred",
default="preds.npz",
help="ouput file name of test data")
parser.add_argument("--plot_figure",
action="store_true",
help="If plot figure for test")
parser.add_argument("--save_result",
action="store_true",
help="If save result for test")
args = parser.parse_args()
return args
def set_config(args, data_reader):
config = Config()
config.X_shape = data_reader.X_shape
config.n_channel = config.X_shape[-1]
config.Y_shape = data_reader.Y_shape
config.n_class = config.Y_shape[-1]
config.depths = args.depth
config.filters_root = args.filters_root
config.kernel_size = args.kernel_size
config.pool_size = args.pool_size
config.dilation_rate = args.dilation_rate
config.batch_size = args.batch_size
config.class_weights = args.class_weights
config.loss_type = args.loss_type
config.weight_decay = args.weight_decay
config.optimizer = args.optimizer
config.learning_rate = args.learning_rate
if (args.decay_step == -1) and (args.mode == 'train'):
config.decay_step = data_reader.n_signal // args.batch_size
else:
config.decay_step = args.decay_step
config.decay_rate = args.decay_rate
config.momentum = args.momentum
config.summary = args.summary
config.drop_rate = args.drop_rate
config.class_weights = args.class_weights
return config
def train_fn(args, data_reader, data_reader_valid=None):
current_time = time.strftime("%y%m%d-%H%M%S")
log_dir = os.path.join(args.log_dir, current_time)
logging.info("Training log: {}".format(log_dir))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
figure_dir = os.path.join(log_dir, 'figures')
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
config = set_config(args, data_reader)
with open(os.path.join(log_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
batch = data_reader.dequeue(args.batch_size)
if data_reader_valid is not None:
batch_valid = data_reader_valid.dequeue(args.batch_size)
model = UNet(config)
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
summary_writer = tf.compat.v1.summary.FileWriter(log_dir, sess.graph)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
if args.model_dir is not None:
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
saver.restore(sess, latest_check_point)
model.reset_learning_rate(sess, learning_rate=0.01, global_step=0)
threads = data_reader.start_threads(sess, n_threads=multiprocessing.cpu_count())
if data_reader_valid is not None:
threads_valid = data_reader_valid.start_threads(sess, n_threads=multiprocessing.cpu_count())
flog = open(os.path.join(log_dir, 'loss.log'), 'w')
total_step = 0
mean_loss = 0
pool = multiprocessing.Pool(2)
for epoch in range(args.epochs):
progressbar = tqdm(range(0, data_reader.n_signal, args.batch_size), desc="{}: ".format(log_dir.split("/")[-1]))
for step in progressbar:
X_batch, Y_batch = sess.run(batch)
loss_batch = model.train_on_batch(sess, X_batch, Y_batch, summary_writer, args.drop_rate)
if epoch < 1:
mean_loss = loss_batch
else:
total_step += 1
mean_loss += (loss_batch-mean_loss)/total_step
progressbar.set_description("{}: epoch={}, loss={:.6f}, mean loss={:.6f}".format(log_dir.split("/")[-1], epoch, loss_batch, mean_loss))
flog.write("Epoch: {}, step: {}, loss: {}, mean loss: {}\n".format(epoch, step//args.batch_size, loss_batch, mean_loss))
saver.save(sess, os.path.join(log_dir, "model_{}.ckpt".format(epoch)))
## valid
if data_reader_valid is not None:
mean_loss_valid = 0
total_step_valid = 0
progressbar = tqdm(range(0, data_reader_valid.n_signal, args.batch_size), desc="Valid: ")
for step in progressbar:
X_batch, Y_batch = sess.run(batch_valid)
loss_batch, preds_batch = model.valid_on_batch(sess, X_batch, Y_batch, summary_writer, args.drop_rate)
total_step_valid += 1
mean_loss_valid += (loss_batch-mean_loss_valid)/total_step_valid
progressbar.set_description("Valid: loss={:.6f}, mean loss={:.6f}".format(loss_batch, mean_loss_valid))
flog.write("Valid: {}, step: {}, loss: {}, mean loss: {}\n".format(epoch, step//args.batch_size, loss_batch, mean_loss_valid))
# plot_result(epoch, args.num_plots, figure_dir, preds_batch, X_batch, Y_batch)
pool.map(partial(plot_result_thread,
epoch = epoch,
preds = preds_batch,
X = X_batch,
Y = Y_batch,
figure_dir = figure_dir),
range(args.num_plots))
flog.close()
pool.close()
data_reader.coord.request_stop()
if data_reader_valid is not None:
data_reader_valid.coord.request_stop()
try:
data_reader.coord.join(threads, stop_grace_period_secs=10, ignore_live_threads=True)
if data_reader_valid is not None:
data_reader_valid.coord.join(threads_valid, stop_grace_period_secs=10, ignore_live_threads=True)
except:
pass
sess.run(data_reader.queue.close(cancel_pending_enqueues=True))
if data_reader_valid is not None:
sess.run(data_reader_valid.queue.close(cancel_pending_enqueues=True))
return 0
def test_fn(args, data_reader, figure_dir=None, result_dir=None):
current_time = time.strftime("%y%m%d-%H%M%S")
log_dir = os.path.join(args.log_dir, args.mode, current_time)
logging.info("{} log: {}".format(args.mode, log_dir))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if (args.plot_figure == True) and (figure_dir is None):
figure_dir = os.path.join(log_dir, 'figures')
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
if (args.save_result == True) and (result_dir is None):
result_dir = os.path.join(log_dir, 'results')
if not os.path.exists(result_dir):
os.makedirs(result_dir)
config = set_config(args, data_reader)
with open(os.path.join(log_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
batch = data_reader.dequeue(args.batch_size)
model = UNet(config, input_batch=batch, mode='test')
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
summary_writer = tf.compat.v1.summary.FileWriter(log_dir, sess.graph)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
saver.restore(sess, latest_check_point)
threads = data_reader.start_threads(sess, n_threads=multiprocessing.cpu_count())
flog = open(os.path.join(log_dir, 'loss.log'), 'w')
total_step = 0
mean_loss = 0
progressbar = tqdm(range(0, data_reader.n_signal, args.batch_size), desc=args.mode)
if args.plot_figure:
num_pool = multiprocessing.cpu_count()*2
elif args.save_result:
num_pool = multiprocessing.cpu_count()
else:
num_pool = 2
pool = multiprocessing.Pool(num_pool)
for step in progressbar:
if step + args.batch_size >= data_reader.n_signal:
for t in threads:
t.join()
sess.run(data_reader.queue.close())
loss_batch, preds_batch, X_batch, Y_batch, ratio_batch, \
signal_batch, noise_batch, fname_batch = model.test_on_batch(sess, summary_writer)
total_step += 1
mean_loss += (loss_batch-mean_loss)/total_step
progressbar.set_description("{}: loss={:.6f}, mean loss={:6f}".format(args.mode, loss_batch, mean_loss))
flog.write("step: {}, loss: {}\n".format(step, loss_batch))
flog.flush()
pool.map(partial(postprocessing_test,
preds=preds_batch,
X=X_batch*ratio_batch[:,np.newaxis,np.newaxis,np.newaxis],
fname=fname_batch,
figure_dir=figure_dir,
result_dir=result_dir,
signal_FT=signal_batch,
noise_FT=noise_batch),
range(len(X_batch)))
flog.close()
pool.close()
return 0
def pred_fn(args, data_reader, figure_dir=None, result_dir=None, log_dir=None):
current_time = time.strftime("%y%m%d-%H%M%S")
if log_dir is None:
log_dir = os.path.join(args.log_dir, "pred", current_time)
logging.info("Pred log: %s" % log_dir)
# logging.info("Dataset size: {}".format(data_reader.num_data))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if args.plot_figure:
figure_dir = os.path.join(log_dir, 'figures')
os.makedirs(figure_dir, exist_ok=True)
if args.save_result:
result_dir = os.path.join(log_dir, 'results')
os.makedirs(result_dir, exist_ok=True)
config = set_config(args, data_reader)
with open(os.path.join(log_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
data_batch = data_reader.dataset(args.batch_size)
# model = UNet(config, input_batch=batch, mode='pred')
model = UNet(config, mode='pred')
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
#sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
saver.restore(sess, latest_check_point)
# threads = data_reader.start_threads(sess, n_threads=multiprocessing.cpu_count())
if args.plot_figure:
num_pool = multiprocessing.cpu_count()
elif args.save_result:
num_pool = multiprocessing.cpu_count()
else:
num_pool = 2
multiprocessing.set_start_method('spawn')
pool = multiprocessing.Pool(num_pool)
for step in tqdm(range(0, data_reader.n_signal, args.batch_size), desc="Pred"):
#if step + args.batch_size >= data_reader.n_signal:
# for t in threads:
# t.join()
# sess.run(data_reader.queue.close())
# X_batch = []
# ratio_batch = []
# fname_batch = []
# for i in range(step, min(step+args.batch_size, data_reader.n_signal)):
# X, ratio, fname = data_reader[i]
# if np.std(X) == 0:
# continue
# X_batch.append(X)
# ratio_batch.append(ratio)
# fname_batch.append(fname)
# X_batch = np.stack(X_batch, axis=0)
# ratio_batch = np.array(ratio_batch)
X_batch, ratio_batch, fname_batch = sess.run(data_batch)
preds_batch = sess.run(model.preds, feed_dict={model.X: X_batch,
model.drop_rate: 0,
model.is_training: False})
#preds_batch, X_batch, ratio_batch, fname_batch = sess.run([model.preds,
# batch[0],
# batch[1],
# batch[2]],
# feed_dict={model.drop_rate: 0,
# model.is_training: False})
pool.map(partial(postprocessing_pred,
preds = preds_batch,
X = X_batch*ratio_batch[:,np.newaxis,:,np.newaxis],
fname = [x.decode() for x in fname_batch],
figure_dir = figure_dir,
result_dir = result_dir),
range(len(X_batch)))
# for i in range(len(X_batch)):
# postprocessing_thread(i,
# preds = preds_batch,
# X = X_batch*ratio_batch[:,np.newaxis,np.newaxis,np.newaxis],
# fname = fname_batch,
# figure_dir = figure_dir,
# result_dir = result_dir)
pool.close()
return 0
def main(args):
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
coord = tf.train.Coordinator()
if args.mode == "train":
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader(
signal_dir=args.train_signal_dir,
signal_list=args.train_signal_list,
noise_dir=args.train_noise_dir,
noise_list=args.train_noise_list,
queue_size=args.batch_size*2,
coord=coord)
if (args.valid_signal_list is not None) and (args.valid_noise_list is not None):
data_reader_valid = DataReader(
signal_dir=args.valid_signal_dir,
signal_list=args.valid_signal_list,
noise_dir=args.valid_noise_dir,
noise_list=args.valid_noise_list,
queue_size=args.batch_size*2,
coord=coord)
logging.info("Dataset size: training %d, validation %d" % (data_reader.n_signal, data_reader_valid.n_signal))
else:
data_reader_valid = None
logging.info("Dataset size: training %d, validation 0" % (data_reader.n_signal))
train_fn(args, data_reader, data_reader_valid)
elif args.mode == "valid" or args.mode == "test":
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_test(
signal_dir=args.valid_signal_dir,
signal_list=args.valid_signal_list,
noise_dir=args.valid_noise_dir,
noise_list=args.valid_noise_list,
queue_size=args.batch_size*2,
coord=coord)
logging.info("Dataset Size: {}".format(data_reader.n_signal))
test_fn(args, data_reader)
elif args.mode == "pred":
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_pred(
signal_dir=args.data_dir,
signal_list=args.data_list,
sampling_rate=args.sampling_rate)
logging.info("Dataset Size: {}".format(data_reader.n_signal))
pred_fn(args, data_reader, log_dir=args.output_dir)
else:
print("mode should be: train, valid, test, debug or pred")
coord.request_stop()
coord.join()
return 0
if __name__ == '__main__':
args = read_args()
main(args)
|