zhuwq0's picture
init
81c99dc
import logging
import numpy as np
import tensorflow as tf
from util import *
tf.compat.v1.disable_eager_execution()
class ModelConfig:
batch_size = 20
depths = 6
filters_root = 8
kernel_size = [3, 3]
pool_size = [2, 2]
dilation_rate = [1, 1]
class_weights = [1.0, 1.0, 1.0]
loss_type = "cross_entropy"
weight_decay = 0.0
optimizer = "adam"
momentum = 0.9
learning_rate = 0.01
decay_step = 1e9
decay_rate = 0.9
drop_rate = 0.0
summary = True
X_shape = [31, 201, 2]
n_channel = X_shape[-1]
Y_shape = [31, 201, 2]
n_class = Y_shape[-1]
def __init__(self, **kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
def update_args(self, args):
for k, v in vars(args).items():
setattr(self, k, v)
def crop_and_concat(net1, net2):
"""
the size(net1) <= size(net2)
"""
# net1_shape = net1.get_shape().as_list()
# net2_shape = net2.get_shape().as_list()
# # print(net1_shape)
# # print(net2_shape)
# # if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]:
# offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0]
# size = [-1, net1_shape[1], net1_shape[2], -1]
# net2_resize = tf.slice(net2, offsets, size)
# return tf.concat([net1, net2_resize], 3)
# # else:
# # offsets = [0, (net1_shape[1] - net2_shape[1]) // 2, (net1_shape[2] - net2_shape[2]) // 2, 0]
# # size = [-1, net2_shape[1], net2_shape[2], -1]
# # net1_resize = tf.slice(net1, offsets, size)
# # return tf.concat([net1_resize, net2], 3)
## dynamic shape
chn1 = net1.get_shape().as_list()[-1]
chn2 = net2.get_shape().as_list()[-1]
net1_shape = tf.shape(net1)
net2_shape = tf.shape(net2)
# print(net1_shape)
# print(net2_shape)
# if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]:
offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0]
size = [-1, net1_shape[1], net1_shape[2], -1]
net2_resize = tf.slice(net2, offsets, size)
out = tf.concat([net1, net2_resize], 3)
out.set_shape([None, None, None, chn1 + chn2])
return out
def crop_only(net1, net2):
"""
the size(net1) <= size(net2)
"""
net1_shape = net1.get_shape().as_list()
net2_shape = net2.get_shape().as_list()
# print(net1_shape)
# print(net2_shape)
# if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]:
offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0]
size = [-1, net1_shape[1], net1_shape[2], -1]
net2_resize = tf.slice(net2, offsets, size)
# return tf.concat([net1, net2_resize], 3)
return net2_resize
class UNet:
def __init__(self, config=ModelConfig(), input_batch=None, mode='train'):
self.depths = config.depths
self.filters_root = config.filters_root
self.kernel_size = config.kernel_size
self.dilation_rate = config.dilation_rate
self.pool_size = config.pool_size
self.X_shape = config.X_shape
self.Y_shape = config.Y_shape
self.n_channel = config.n_channel
self.n_class = config.n_class
self.class_weights = config.class_weights
self.batch_size = config.batch_size
self.loss_type = config.loss_type
self.weight_decay = config.weight_decay
self.optimizer = config.optimizer
self.decay_step = config.decay_step
self.decay_rate = config.decay_rate
self.momentum = config.momentum
self.learning_rate = config.learning_rate
self.global_step = tf.compat.v1.get_variable(name="global_step", initializer=0, dtype=tf.int32)
self.summary_train = []
self.summary_valid = []
self.build(input_batch, mode=mode)
def add_placeholders(self, input_batch=None, mode='train'):
if input_batch is None:
self.X = tf.compat.v1.placeholder(
dtype=tf.float32, shape=[None, None, None, self.X_shape[-1]], name='X'
)
self.Y = tf.compat.v1.placeholder(
dtype=tf.float32, shape=[None, None, None, self.n_class], name='y'
)
else:
self.X = input_batch[0]
if mode in ["train", "valid", "test"]:
self.Y = input_batch[1]
self.input_batch = input_batch
self.is_training = tf.compat.v1.placeholder(dtype=tf.bool, name="is_training")
# self.keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob")
self.drop_rate = tf.compat.v1.placeholder(dtype=tf.float32, name="drop_rate")
# self.learning_rate = tf.placeholder_with_default(tf.constant(0.01, dtype=tf.float32), shape=[], name="learning_rate")
# self.global_step = tf.placeholder_with_default(tf.constant(0, dtype=tf.int32), shape=[], name="global_step")
def add_prediction_op(self):
logging.info(
"Model: depths {depths}, filters {filters}, "
"filter size {kernel_size[0]}x{kernel_size[1]}, "
"pool size: {pool_size[0]}x{pool_size[1]}, "
"dilation rate: {dilation_rate[0]}x{dilation_rate[1]}".format(
depths=self.depths,
filters=self.filters_root,
kernel_size=self.kernel_size,
dilation_rate=self.dilation_rate,
pool_size=self.pool_size,
)
)
if self.weight_decay > 0:
weight_decay = tf.constant(self.weight_decay, dtype=tf.float32, name="weight_constant")
self.regularizer = tf.keras.regularizers.l2(l=0.5 * (weight_decay))
else:
self.regularizer = None
self.initializer = tf.compat.v1.keras.initializers.VarianceScaling(
scale=1.0, mode="fan_avg", distribution="uniform"
)
# down sample layers
convs = [None] * self.depths # store output of each depth
with tf.compat.v1.variable_scope("Input"):
net = self.X
net = tf.compat.v1.layers.conv2d(
net,
filters=self.filters_root,
kernel_size=self.kernel_size,
activation=None,
use_bias=False,
padding='same',
dilation_rate=self.dilation_rate,
kernel_initializer=self.initializer,
kernel_regularizer=self.regularizer,
# bias_regularizer=self.regularizer,
name="input_conv",
)
net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="input_bn")
net = tf.nn.relu(net, name="input_relu")
# net = tf.nn.dropout(net, self.keep_prob)
net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="input_dropout")
for depth in range(0, self.depths):
with tf.compat.v1.variable_scope("DownConv_%d" % depth):
filters = int(2 ** (depth) * self.filters_root)
net = tf.compat.v1.layers.conv2d(
net,
filters=filters,
kernel_size=self.kernel_size,
activation=None,
use_bias=False,
padding='same',
dilation_rate=self.dilation_rate,
kernel_initializer=self.initializer,
kernel_regularizer=self.regularizer,
# bias_regularizer=self.regularizer,
name="down_conv1_{}".format(depth + 1),
)
net = tf.compat.v1.layers.batch_normalization(
net, training=self.is_training, name="down_bn1_{}".format(depth + 1)
)
net = tf.nn.relu(net, name="down_relu1_{}".format(depth + 1))
net = tf.compat.v1.layers.dropout(
net, rate=self.drop_rate, training=self.is_training, name="down_dropout1_{}".format(depth + 1)
)
convs[depth] = net
if depth < self.depths - 1:
net = tf.compat.v1.layers.conv2d(
net,
filters=filters,
kernel_size=self.kernel_size,
strides=self.pool_size,
activation=None,
use_bias=False,
padding='same',
# dilation_rate=self.dilation_rate,
kernel_initializer=self.initializer,
kernel_regularizer=self.regularizer,
# bias_regularizer=self.regularizer,
name="down_conv3_{}".format(depth + 1),
)
net = tf.compat.v1.layers.batch_normalization(
net, training=self.is_training, name="down_bn3_{}".format(depth + 1)
)
net = tf.nn.relu(net, name="down_relu3_{}".format(depth + 1))
net = tf.compat.v1.layers.dropout(
net, rate=self.drop_rate, training=self.is_training, name="down_dropout3_{}".format(depth + 1)
)
# up layers
for depth in range(self.depths - 2, -1, -1):
with tf.compat.v1.variable_scope("UpConv_%d" % depth):
filters = int(2 ** (depth) * self.filters_root)
net = tf.compat.v1.layers.conv2d_transpose(
net,
filters=filters,
kernel_size=self.kernel_size,
strides=self.pool_size,
activation=None,
use_bias=False,
padding="same",
kernel_initializer=self.initializer,
kernel_regularizer=self.regularizer,
# bias_regularizer=self.regularizer,
name="up_conv0_{}".format(depth + 1),
)
net = tf.compat.v1.layers.batch_normalization(
net, training=self.is_training, name="up_bn0_{}".format(depth + 1)
)
net = tf.nn.relu(net, name="up_relu0_{}".format(depth + 1))
net = tf.compat.v1.layers.dropout(
net, rate=self.drop_rate, training=self.is_training, name="up_dropout0_{}".format(depth + 1)
)
# skip connection
net = crop_and_concat(convs[depth], net)
# net = crop_only(convs[depth], net)
net = tf.compat.v1.layers.conv2d(
net,
filters=filters,
kernel_size=self.kernel_size,
activation=None,
use_bias=False,
padding='same',
dilation_rate=self.dilation_rate,
kernel_initializer=self.initializer,
kernel_regularizer=self.regularizer,
# bias_regularizer=self.regularizer,
name="up_conv1_{}".format(depth + 1),
)
net = tf.compat.v1.layers.batch_normalization(
net, training=self.is_training, name="up_bn1_{}".format(depth + 1)
)
net = tf.nn.relu(net, name="up_relu1_{}".format(depth + 1))
net = tf.compat.v1.layers.dropout(
net, rate=self.drop_rate, training=self.is_training, name="up_dropout1_{}".format(depth + 1)
)
# Output Map
with tf.compat.v1.variable_scope("Output"):
net = tf.compat.v1.layers.conv2d(
net,
filters=self.n_class,
kernel_size=(1, 1),
activation=None,
use_bias=True,
padding='same',
# dilation_rate=self.dilation_rate,
kernel_initializer=self.initializer,
kernel_regularizer=self.regularizer,
# bias_regularizer=self.regularizer,
name="output_conv",
)
# net = tf.nn.relu(net,
# name="output_relu")
# net = tf.layers.dropout(net,
# rate=self.drop_rate,
# training=self.is_training,
# name="output_dropout")
# net = tf.layers.batch_normalization(net,
# training=self.is_training,
# name="output_bn")
output = net
with tf.compat.v1.variable_scope("representation"):
self.representation = convs[-1]
with tf.compat.v1.variable_scope("logits"):
self.logits = output
tmp = tf.compat.v1.summary.histogram("logits", self.logits)
self.summary_train.append(tmp)
with tf.compat.v1.variable_scope("preds"):
self.preds = tf.nn.softmax(output)
tmp = tf.compat.v1.summary.histogram("preds", self.preds)
self.summary_train.append(tmp)
def add_loss_op(self):
if self.loss_type == "cross_entropy":
with tf.compat.v1.variable_scope("cross_entropy"):
flat_logits = tf.reshape(self.logits, [-1, self.n_class], name="logits")
flat_labels = tf.reshape(self.Y, [-1, self.n_class], name="labels")
if (np.array(self.class_weights) != 1).any():
class_weights = tf.constant(np.array(self.class_weights, dtype=np.float32), name="class_weights")
weight_map = tf.multiply(flat_labels, class_weights)
weight_map = tf.reduce_sum(input_tensor=weight_map, axis=1)
loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels)
# loss_map = tf.nn.sigmoid_cross_entropy_with_logits(logits=flat_logits,
# labels=flat_labels)
weighted_loss = tf.multiply(loss_map, weight_map)
loss = tf.reduce_mean(input_tensor=weighted_loss)
else:
loss = tf.reduce_mean(
input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels)
)
# loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=flat_logits,
# labels=flat_labels))
elif self.loss_type == "IOU":
with tf.compat.v1.variable_scope("IOU"):
eps = 1e-7
loss = 0
for i in range(1, self.n_class):
intersection = eps + tf.reduce_sum(
input_tensor=self.preds[:, :, :, i] * self.Y[:, :, :, i], axis=[1, 2]
)
union = (
eps
+ tf.reduce_sum(input_tensor=self.preds[:, :, :, i], axis=[1, 2])
+ tf.reduce_sum(input_tensor=self.Y[:, :, :, i], axis=[1, 2])
)
loss += 1 - tf.reduce_mean(input_tensor=intersection / union)
elif self.loss_type == "mean_squared":
with tf.compat.v1.variable_scope("mean_squared"):
flat_logits = tf.reshape(self.logits, [-1, self.n_class], name="logits")
flat_labels = tf.reshape(self.Y, [-1, self.n_class], name="labels")
with tf.compat.v1.variable_scope("mean_squared"):
loss = tf.compat.v1.losses.mean_squared_error(labels=flat_labels, predictions=flat_logits)
else:
raise ValueError("Unknown loss function: " % self.loss_type)
tmp = tf.compat.v1.summary.scalar("train_loss", loss)
self.summary_train.append(tmp)
tmp = tf.compat.v1.summary.scalar("valid_loss", loss)
self.summary_valid.append(tmp)
if self.weight_decay > 0:
with tf.compat.v1.name_scope('weight_loss'):
tmp = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)
weight_loss = tf.add_n(tmp, name="weight_loss")
self.loss = loss + weight_loss
else:
self.loss = loss
def add_training_op(self):
if self.optimizer == "momentum":
self.learning_rate_node = tf.compat.v1.train.exponential_decay(
learning_rate=self.learning_rate,
global_step=self.global_step,
decay_steps=self.decay_step,
decay_rate=self.decay_rate,
staircase=True,
)
optimizer = tf.compat.v1.train.MomentumOptimizer(
learning_rate=self.learning_rate_node, momentum=self.momentum
)
elif self.optimizer == "adam":
self.learning_rate_node = tf.compat.v1.train.exponential_decay(
learning_rate=self.learning_rate,
global_step=self.global_step,
decay_steps=self.decay_step,
decay_rate=self.decay_rate,
staircase=True,
)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate_node)
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.train_op = optimizer.minimize(self.loss, global_step=self.global_step)
tmp = tf.compat.v1.summary.scalar("learning_rate", self.learning_rate_node)
self.summary_train.append(tmp)
def reset_learning_rate(self, sess, learning_rate, global_step):
self.learning_rate = learning_rate
assign_op = self.global_step.assign(global_step)
sess.run(assign_op)
if self.optimizer == "momentum":
self.learning_rate_node = tf.compat.v1.train.exponential_decay(
learning_rate=learning_rate,
global_step=self.global_step,
decay_steps=self.decay_step,
decay_rate=self.decay_rate,
staircase=True,
)
optimizer = tf.compat.v1.train.MomentumOptimizer(
learning_rate=self.learning_rate_node, momentum=self.momentum
)
elif self.optimizer == "adam":
self.learning_rate_node = tf.compat.v1.train.exponential_decay(
learning_rate=self.learning_rate,
global_step=self.global_step,
decay_steps=self.decay_step,
decay_rate=self.decay_rate,
staircase=True,
)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate_node)
def train_on_batch(self, sess, X_batch, Y_batch, summary_writer, drop_rate=0.0):
feed = {self.drop_rate: drop_rate, self.is_training: True, self.X: X_batch, self.Y: Y_batch}
_, step_summary, step, loss = sess.run(
[self.train_op, self.summary_train, self.global_step, self.loss], feed_dict=feed
)
summary_writer.add_summary(step_summary, step)
return loss
def valid_on_batch(self, sess, X_batch, Y_batch, summary_writer, drop_rate=0.0):
feed = {self.drop_rate: drop_rate, self.is_training: False, self.X: X_batch, self.Y: Y_batch}
step_summary, step, loss, preds = sess.run(
[self.summary_valid, self.global_step, self.loss, self.preds], feed_dict=feed
)
summary_writer.add_summary(step_summary, step)
return loss, preds
def test_on_batch(self, sess, summary_writer):
feed = {self.drop_rate: 0, self.is_training: False}
(
step_summary,
step,
loss,
preds,
X_batch,
Y_batch,
ratio_batch,
signal_batch,
noise_batch,
fname_batch,
) = sess.run(
[
self.summary_valid,
self.global_step,
self.loss,
self.preds,
self.X,
self.Y,
self.input_batch[2],
self.input_batch[3],
self.input_batch[4],
self.input_batch[5],
],
feed_dict=feed,
)
summary_writer.add_summary(step_summary, step)
return loss, preds, X_batch, Y_batch, ratio_batch, signal_batch, noise_batch, fname_batch
def build(self, input_batch=None, mode='train'):
self.add_placeholders(input_batch, mode)
self.add_prediction_op()
if mode in ["train", "valid", "test"]:
self.add_loss_op()
self.add_training_op()
# self.add_metrics_op()
self.summary_train = tf.compat.v1.summary.merge(self.summary_train)
self.summary_valid = tf.compat.v1.summary.merge(self.summary_valid)
return 0