Spaces:
Running
Running
import logging | |
import numpy as np | |
import tensorflow as tf | |
from util import * | |
tf.compat.v1.disable_eager_execution() | |
class ModelConfig: | |
batch_size = 20 | |
depths = 6 | |
filters_root = 8 | |
kernel_size = [3, 3] | |
pool_size = [2, 2] | |
dilation_rate = [1, 1] | |
class_weights = [1.0, 1.0, 1.0] | |
loss_type = "cross_entropy" | |
weight_decay = 0.0 | |
optimizer = "adam" | |
momentum = 0.9 | |
learning_rate = 0.01 | |
decay_step = 1e9 | |
decay_rate = 0.9 | |
drop_rate = 0.0 | |
summary = True | |
X_shape = [31, 201, 2] | |
n_channel = X_shape[-1] | |
Y_shape = [31, 201, 2] | |
n_class = Y_shape[-1] | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
setattr(self, k, v) | |
def update_args(self, args): | |
for k, v in vars(args).items(): | |
setattr(self, k, v) | |
def crop_and_concat(net1, net2): | |
""" | |
the size(net1) <= size(net2) | |
""" | |
# net1_shape = net1.get_shape().as_list() | |
# net2_shape = net2.get_shape().as_list() | |
# # print(net1_shape) | |
# # print(net2_shape) | |
# # if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]: | |
# offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0] | |
# size = [-1, net1_shape[1], net1_shape[2], -1] | |
# net2_resize = tf.slice(net2, offsets, size) | |
# return tf.concat([net1, net2_resize], 3) | |
# # else: | |
# # offsets = [0, (net1_shape[1] - net2_shape[1]) // 2, (net1_shape[2] - net2_shape[2]) // 2, 0] | |
# # size = [-1, net2_shape[1], net2_shape[2], -1] | |
# # net1_resize = tf.slice(net1, offsets, size) | |
# # return tf.concat([net1_resize, net2], 3) | |
## dynamic shape | |
chn1 = net1.get_shape().as_list()[-1] | |
chn2 = net2.get_shape().as_list()[-1] | |
net1_shape = tf.shape(net1) | |
net2_shape = tf.shape(net2) | |
# print(net1_shape) | |
# print(net2_shape) | |
# if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]: | |
offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0] | |
size = [-1, net1_shape[1], net1_shape[2], -1] | |
net2_resize = tf.slice(net2, offsets, size) | |
out = tf.concat([net1, net2_resize], 3) | |
out.set_shape([None, None, None, chn1 + chn2]) | |
return out | |
def crop_only(net1, net2): | |
""" | |
the size(net1) <= size(net2) | |
""" | |
net1_shape = net1.get_shape().as_list() | |
net2_shape = net2.get_shape().as_list() | |
# print(net1_shape) | |
# print(net2_shape) | |
# if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]: | |
offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0] | |
size = [-1, net1_shape[1], net1_shape[2], -1] | |
net2_resize = tf.slice(net2, offsets, size) | |
# return tf.concat([net1, net2_resize], 3) | |
return net2_resize | |
class UNet: | |
def __init__(self, config=ModelConfig(), input_batch=None, mode='train'): | |
self.depths = config.depths | |
self.filters_root = config.filters_root | |
self.kernel_size = config.kernel_size | |
self.dilation_rate = config.dilation_rate | |
self.pool_size = config.pool_size | |
self.X_shape = config.X_shape | |
self.Y_shape = config.Y_shape | |
self.n_channel = config.n_channel | |
self.n_class = config.n_class | |
self.class_weights = config.class_weights | |
self.batch_size = config.batch_size | |
self.loss_type = config.loss_type | |
self.weight_decay = config.weight_decay | |
self.optimizer = config.optimizer | |
self.decay_step = config.decay_step | |
self.decay_rate = config.decay_rate | |
self.momentum = config.momentum | |
self.learning_rate = config.learning_rate | |
self.global_step = tf.compat.v1.get_variable(name="global_step", initializer=0, dtype=tf.int32) | |
self.summary_train = [] | |
self.summary_valid = [] | |
self.build(input_batch, mode=mode) | |
def add_placeholders(self, input_batch=None, mode='train'): | |
if input_batch is None: | |
self.X = tf.compat.v1.placeholder( | |
dtype=tf.float32, shape=[None, None, None, self.X_shape[-1]], name='X' | |
) | |
self.Y = tf.compat.v1.placeholder( | |
dtype=tf.float32, shape=[None, None, None, self.n_class], name='y' | |
) | |
else: | |
self.X = input_batch[0] | |
if mode in ["train", "valid", "test"]: | |
self.Y = input_batch[1] | |
self.input_batch = input_batch | |
self.is_training = tf.compat.v1.placeholder(dtype=tf.bool, name="is_training") | |
# self.keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob") | |
self.drop_rate = tf.compat.v1.placeholder(dtype=tf.float32, name="drop_rate") | |
# self.learning_rate = tf.placeholder_with_default(tf.constant(0.01, dtype=tf.float32), shape=[], name="learning_rate") | |
# self.global_step = tf.placeholder_with_default(tf.constant(0, dtype=tf.int32), shape=[], name="global_step") | |
def add_prediction_op(self): | |
logging.info( | |
"Model: depths {depths}, filters {filters}, " | |
"filter size {kernel_size[0]}x{kernel_size[1]}, " | |
"pool size: {pool_size[0]}x{pool_size[1]}, " | |
"dilation rate: {dilation_rate[0]}x{dilation_rate[1]}".format( | |
depths=self.depths, | |
filters=self.filters_root, | |
kernel_size=self.kernel_size, | |
dilation_rate=self.dilation_rate, | |
pool_size=self.pool_size, | |
) | |
) | |
if self.weight_decay > 0: | |
weight_decay = tf.constant(self.weight_decay, dtype=tf.float32, name="weight_constant") | |
self.regularizer = tf.keras.regularizers.l2(l=0.5 * (weight_decay)) | |
else: | |
self.regularizer = None | |
self.initializer = tf.compat.v1.keras.initializers.VarianceScaling( | |
scale=1.0, mode="fan_avg", distribution="uniform" | |
) | |
# down sample layers | |
convs = [None] * self.depths # store output of each depth | |
with tf.compat.v1.variable_scope("Input"): | |
net = self.X | |
net = tf.compat.v1.layers.conv2d( | |
net, | |
filters=self.filters_root, | |
kernel_size=self.kernel_size, | |
activation=None, | |
use_bias=False, | |
padding='same', | |
dilation_rate=self.dilation_rate, | |
kernel_initializer=self.initializer, | |
kernel_regularizer=self.regularizer, | |
# bias_regularizer=self.regularizer, | |
name="input_conv", | |
) | |
net = tf.compat.v1.layers.batch_normalization(net, training=self.is_training, name="input_bn") | |
net = tf.nn.relu(net, name="input_relu") | |
# net = tf.nn.dropout(net, self.keep_prob) | |
net = tf.compat.v1.layers.dropout(net, rate=self.drop_rate, training=self.is_training, name="input_dropout") | |
for depth in range(0, self.depths): | |
with tf.compat.v1.variable_scope("DownConv_%d" % depth): | |
filters = int(2 ** (depth) * self.filters_root) | |
net = tf.compat.v1.layers.conv2d( | |
net, | |
filters=filters, | |
kernel_size=self.kernel_size, | |
activation=None, | |
use_bias=False, | |
padding='same', | |
dilation_rate=self.dilation_rate, | |
kernel_initializer=self.initializer, | |
kernel_regularizer=self.regularizer, | |
# bias_regularizer=self.regularizer, | |
name="down_conv1_{}".format(depth + 1), | |
) | |
net = tf.compat.v1.layers.batch_normalization( | |
net, training=self.is_training, name="down_bn1_{}".format(depth + 1) | |
) | |
net = tf.nn.relu(net, name="down_relu1_{}".format(depth + 1)) | |
net = tf.compat.v1.layers.dropout( | |
net, rate=self.drop_rate, training=self.is_training, name="down_dropout1_{}".format(depth + 1) | |
) | |
convs[depth] = net | |
if depth < self.depths - 1: | |
net = tf.compat.v1.layers.conv2d( | |
net, | |
filters=filters, | |
kernel_size=self.kernel_size, | |
strides=self.pool_size, | |
activation=None, | |
use_bias=False, | |
padding='same', | |
# dilation_rate=self.dilation_rate, | |
kernel_initializer=self.initializer, | |
kernel_regularizer=self.regularizer, | |
# bias_regularizer=self.regularizer, | |
name="down_conv3_{}".format(depth + 1), | |
) | |
net = tf.compat.v1.layers.batch_normalization( | |
net, training=self.is_training, name="down_bn3_{}".format(depth + 1) | |
) | |
net = tf.nn.relu(net, name="down_relu3_{}".format(depth + 1)) | |
net = tf.compat.v1.layers.dropout( | |
net, rate=self.drop_rate, training=self.is_training, name="down_dropout3_{}".format(depth + 1) | |
) | |
# up layers | |
for depth in range(self.depths - 2, -1, -1): | |
with tf.compat.v1.variable_scope("UpConv_%d" % depth): | |
filters = int(2 ** (depth) * self.filters_root) | |
net = tf.compat.v1.layers.conv2d_transpose( | |
net, | |
filters=filters, | |
kernel_size=self.kernel_size, | |
strides=self.pool_size, | |
activation=None, | |
use_bias=False, | |
padding="same", | |
kernel_initializer=self.initializer, | |
kernel_regularizer=self.regularizer, | |
# bias_regularizer=self.regularizer, | |
name="up_conv0_{}".format(depth + 1), | |
) | |
net = tf.compat.v1.layers.batch_normalization( | |
net, training=self.is_training, name="up_bn0_{}".format(depth + 1) | |
) | |
net = tf.nn.relu(net, name="up_relu0_{}".format(depth + 1)) | |
net = tf.compat.v1.layers.dropout( | |
net, rate=self.drop_rate, training=self.is_training, name="up_dropout0_{}".format(depth + 1) | |
) | |
# skip connection | |
net = crop_and_concat(convs[depth], net) | |
# net = crop_only(convs[depth], net) | |
net = tf.compat.v1.layers.conv2d( | |
net, | |
filters=filters, | |
kernel_size=self.kernel_size, | |
activation=None, | |
use_bias=False, | |
padding='same', | |
dilation_rate=self.dilation_rate, | |
kernel_initializer=self.initializer, | |
kernel_regularizer=self.regularizer, | |
# bias_regularizer=self.regularizer, | |
name="up_conv1_{}".format(depth + 1), | |
) | |
net = tf.compat.v1.layers.batch_normalization( | |
net, training=self.is_training, name="up_bn1_{}".format(depth + 1) | |
) | |
net = tf.nn.relu(net, name="up_relu1_{}".format(depth + 1)) | |
net = tf.compat.v1.layers.dropout( | |
net, rate=self.drop_rate, training=self.is_training, name="up_dropout1_{}".format(depth + 1) | |
) | |
# Output Map | |
with tf.compat.v1.variable_scope("Output"): | |
net = tf.compat.v1.layers.conv2d( | |
net, | |
filters=self.n_class, | |
kernel_size=(1, 1), | |
activation=None, | |
use_bias=True, | |
padding='same', | |
# dilation_rate=self.dilation_rate, | |
kernel_initializer=self.initializer, | |
kernel_regularizer=self.regularizer, | |
# bias_regularizer=self.regularizer, | |
name="output_conv", | |
) | |
# net = tf.nn.relu(net, | |
# name="output_relu") | |
# net = tf.layers.dropout(net, | |
# rate=self.drop_rate, | |
# training=self.is_training, | |
# name="output_dropout") | |
# net = tf.layers.batch_normalization(net, | |
# training=self.is_training, | |
# name="output_bn") | |
output = net | |
with tf.compat.v1.variable_scope("representation"): | |
self.representation = convs[-1] | |
with tf.compat.v1.variable_scope("logits"): | |
self.logits = output | |
tmp = tf.compat.v1.summary.histogram("logits", self.logits) | |
self.summary_train.append(tmp) | |
with tf.compat.v1.variable_scope("preds"): | |
self.preds = tf.nn.softmax(output) | |
tmp = tf.compat.v1.summary.histogram("preds", self.preds) | |
self.summary_train.append(tmp) | |
def add_loss_op(self): | |
if self.loss_type == "cross_entropy": | |
with tf.compat.v1.variable_scope("cross_entropy"): | |
flat_logits = tf.reshape(self.logits, [-1, self.n_class], name="logits") | |
flat_labels = tf.reshape(self.Y, [-1, self.n_class], name="labels") | |
if (np.array(self.class_weights) != 1).any(): | |
class_weights = tf.constant(np.array(self.class_weights, dtype=np.float32), name="class_weights") | |
weight_map = tf.multiply(flat_labels, class_weights) | |
weight_map = tf.reduce_sum(input_tensor=weight_map, axis=1) | |
loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels) | |
# loss_map = tf.nn.sigmoid_cross_entropy_with_logits(logits=flat_logits, | |
# labels=flat_labels) | |
weighted_loss = tf.multiply(loss_map, weight_map) | |
loss = tf.reduce_mean(input_tensor=weighted_loss) | |
else: | |
loss = tf.reduce_mean( | |
input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels) | |
) | |
# loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=flat_logits, | |
# labels=flat_labels)) | |
elif self.loss_type == "IOU": | |
with tf.compat.v1.variable_scope("IOU"): | |
eps = 1e-7 | |
loss = 0 | |
for i in range(1, self.n_class): | |
intersection = eps + tf.reduce_sum( | |
input_tensor=self.preds[:, :, :, i] * self.Y[:, :, :, i], axis=[1, 2] | |
) | |
union = ( | |
eps | |
+ tf.reduce_sum(input_tensor=self.preds[:, :, :, i], axis=[1, 2]) | |
+ tf.reduce_sum(input_tensor=self.Y[:, :, :, i], axis=[1, 2]) | |
) | |
loss += 1 - tf.reduce_mean(input_tensor=intersection / union) | |
elif self.loss_type == "mean_squared": | |
with tf.compat.v1.variable_scope("mean_squared"): | |
flat_logits = tf.reshape(self.logits, [-1, self.n_class], name="logits") | |
flat_labels = tf.reshape(self.Y, [-1, self.n_class], name="labels") | |
with tf.compat.v1.variable_scope("mean_squared"): | |
loss = tf.compat.v1.losses.mean_squared_error(labels=flat_labels, predictions=flat_logits) | |
else: | |
raise ValueError("Unknown loss function: " % self.loss_type) | |
tmp = tf.compat.v1.summary.scalar("train_loss", loss) | |
self.summary_train.append(tmp) | |
tmp = tf.compat.v1.summary.scalar("valid_loss", loss) | |
self.summary_valid.append(tmp) | |
if self.weight_decay > 0: | |
with tf.compat.v1.name_scope('weight_loss'): | |
tmp = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES) | |
weight_loss = tf.add_n(tmp, name="weight_loss") | |
self.loss = loss + weight_loss | |
else: | |
self.loss = loss | |
def add_training_op(self): | |
if self.optimizer == "momentum": | |
self.learning_rate_node = tf.compat.v1.train.exponential_decay( | |
learning_rate=self.learning_rate, | |
global_step=self.global_step, | |
decay_steps=self.decay_step, | |
decay_rate=self.decay_rate, | |
staircase=True, | |
) | |
optimizer = tf.compat.v1.train.MomentumOptimizer( | |
learning_rate=self.learning_rate_node, momentum=self.momentum | |
) | |
elif self.optimizer == "adam": | |
self.learning_rate_node = tf.compat.v1.train.exponential_decay( | |
learning_rate=self.learning_rate, | |
global_step=self.global_step, | |
decay_steps=self.decay_step, | |
decay_rate=self.decay_rate, | |
staircase=True, | |
) | |
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate_node) | |
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS) | |
with tf.control_dependencies(update_ops): | |
self.train_op = optimizer.minimize(self.loss, global_step=self.global_step) | |
tmp = tf.compat.v1.summary.scalar("learning_rate", self.learning_rate_node) | |
self.summary_train.append(tmp) | |
def reset_learning_rate(self, sess, learning_rate, global_step): | |
self.learning_rate = learning_rate | |
assign_op = self.global_step.assign(global_step) | |
sess.run(assign_op) | |
if self.optimizer == "momentum": | |
self.learning_rate_node = tf.compat.v1.train.exponential_decay( | |
learning_rate=learning_rate, | |
global_step=self.global_step, | |
decay_steps=self.decay_step, | |
decay_rate=self.decay_rate, | |
staircase=True, | |
) | |
optimizer = tf.compat.v1.train.MomentumOptimizer( | |
learning_rate=self.learning_rate_node, momentum=self.momentum | |
) | |
elif self.optimizer == "adam": | |
self.learning_rate_node = tf.compat.v1.train.exponential_decay( | |
learning_rate=self.learning_rate, | |
global_step=self.global_step, | |
decay_steps=self.decay_step, | |
decay_rate=self.decay_rate, | |
staircase=True, | |
) | |
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate_node) | |
def train_on_batch(self, sess, X_batch, Y_batch, summary_writer, drop_rate=0.0): | |
feed = {self.drop_rate: drop_rate, self.is_training: True, self.X: X_batch, self.Y: Y_batch} | |
_, step_summary, step, loss = sess.run( | |
[self.train_op, self.summary_train, self.global_step, self.loss], feed_dict=feed | |
) | |
summary_writer.add_summary(step_summary, step) | |
return loss | |
def valid_on_batch(self, sess, X_batch, Y_batch, summary_writer, drop_rate=0.0): | |
feed = {self.drop_rate: drop_rate, self.is_training: False, self.X: X_batch, self.Y: Y_batch} | |
step_summary, step, loss, preds = sess.run( | |
[self.summary_valid, self.global_step, self.loss, self.preds], feed_dict=feed | |
) | |
summary_writer.add_summary(step_summary, step) | |
return loss, preds | |
def test_on_batch(self, sess, summary_writer): | |
feed = {self.drop_rate: 0, self.is_training: False} | |
( | |
step_summary, | |
step, | |
loss, | |
preds, | |
X_batch, | |
Y_batch, | |
ratio_batch, | |
signal_batch, | |
noise_batch, | |
fname_batch, | |
) = sess.run( | |
[ | |
self.summary_valid, | |
self.global_step, | |
self.loss, | |
self.preds, | |
self.X, | |
self.Y, | |
self.input_batch[2], | |
self.input_batch[3], | |
self.input_batch[4], | |
self.input_batch[5], | |
], | |
feed_dict=feed, | |
) | |
summary_writer.add_summary(step_summary, step) | |
return loss, preds, X_batch, Y_batch, ratio_batch, signal_batch, noise_batch, fname_batch | |
def build(self, input_batch=None, mode='train'): | |
self.add_placeholders(input_batch, mode) | |
self.add_prediction_op() | |
if mode in ["train", "valid", "test"]: | |
self.add_loss_op() | |
self.add_training_op() | |
# self.add_metrics_op() | |
self.summary_train = tf.compat.v1.summary.merge(self.summary_train) | |
self.summary_valid = tf.compat.v1.summary.merge(self.summary_valid) | |
return 0 | |