zhuwq0 commited on
Commit
7a982d6
Β·
1 Parent(s): ef93adb
Files changed (3) hide show
  1. README.md +0 -1
  2. README.md +60 -0
  3. docs/README.md +0 -60
README.md DELETED
@@ -1 +0,0 @@
1
- docs/README.md
 
 
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: DeepDenoiser
3
+ emoji: 🌊
4
+ colorFrom: purple
5
+ colorTo: blue
6
+ sdk: docker
7
+ pinned: false
8
+ ---
9
+
10
+ # DeepDenoiser: Seismic Signal Denoising and Decomposition Using Deep Neural Networks
11
+
12
+ [![](https://github.com/AI4EPS/DeepDenoiser/workflows/documentation/badge.svg)](https://ai4eps.github.io/DeepDenoiser)
13
+ ## 1. Install [miniconda](https://docs.conda.io/en/latest/miniconda.html) and requirements
14
+ - Download DeepDenoiser repository
15
+ ```bash
16
+ git clone https://github.com/wayneweiqiang/DeeoDenoiser.git
17
+ cd DeepDenoiser
18
+ ```
19
+ - Install to default environment
20
+ ```bash
21
+ conda env update -f=env.yml -n base
22
+ ```
23
+ - Install to "deepdenoiser" virtual envirionment
24
+ ```bash
25
+ conda env create -f env.yml
26
+ conda activate deepdenoiser
27
+ ```
28
+
29
+ ## 2. Pre-trained model
30
+ Located in directory: **model/190614-104802**
31
+
32
+ ## 3. Related papers
33
+ - Zhu, Weiqiang, S. Mostafa Mousavi, and Gregory C. Beroza. "Seismic Signal Denoising and Decomposition Using Deep Neural Networks." arXiv preprint arXiv:1811.02695 (2018).
34
+
35
+ ## 4. Interactive example
36
+ See details in the [notebook](https://github.com/wayneweiqiang/DeepDenoiser/blob/master/docs/example_interactive.ipynb): [example_interactive.ipynb](example_interactive.ipynb)
37
+
38
+
39
+ ## 5. Batch prediction
40
+ See details in the [notebook](https://github.com/wayneweiqiang/DeepDenoiser/blob/master/docs/example_batch_prediction.ipynb): [example_batch_prediction.ipynb](example_batch_prediction.ipynb)
41
+ ## 6. Train
42
+ ### Data format
43
+
44
+ Required: two csv files for signal and noise, corresponding directories of the npz files.
45
+
46
+ The csv file contains four columns: "fname", "itp", "channels"
47
+
48
+ The npz file contains four variable: "data", "itp", "channels"
49
+
50
+ The shape of "data" variables has a shape of 9001 x 3
51
+
52
+ The variables "itp" is the data points of first P arrival times.
53
+
54
+ Note: In the demo data, for simplicity we use the waveform before itp as noise samples, so the train_noise_list is same as train_signal_list here.
55
+
56
+ ~~~bash
57
+ python deepdenoiser/train.py --mode=train --train_signal_dir=./Dataset/train --train_signal_list=./Dataset/train.csv --train_noise_dir=./Dataset/train --train_noise_list=./Dataset/train.csv --batch_size=20
58
+ ~~~
59
+
60
+ Please let us know of any bugs found in the code. Suggestions and collaborations are welcomed
docs/README.md DELETED
@@ -1,60 +0,0 @@
1
- ---
2
- title: DeepDenoiser
3
- emoji: 🌊
4
- colorFrom: purple
5
- colorTo: blue
6
- sdk: docker
7
- pinned: false
8
- ---
9
-
10
- # DeepDenoiser: Seismic Signal Denoising and Decomposition Using Deep Neural Networks
11
-
12
- [![](https://github.com/AI4EPS/DeepDenoiser/workflows/documentation/badge.svg)](https://ai4eps.github.io/DeepDenoiser)
13
- ## 1. Install [miniconda](https://docs.conda.io/en/latest/miniconda.html) and requirements
14
- - Download DeepDenoiser repository
15
- ```bash
16
- git clone https://github.com/wayneweiqiang/DeeoDenoiser.git
17
- cd DeepDenoiser
18
- ```
19
- - Install to default environment
20
- ```bash
21
- conda env update -f=env.yml -n base
22
- ```
23
- - Install to "deepdenoiser" virtual envirionment
24
- ```bash
25
- conda env create -f env.yml
26
- conda activate deepdenoiser
27
- ```
28
-
29
- ## 2. Pre-trained model
30
- Located in directory: **model/190614-104802**
31
-
32
- ## 3. Related papers
33
- - Zhu, Weiqiang, S. Mostafa Mousavi, and Gregory C. Beroza. "Seismic Signal Denoising and Decomposition Using Deep Neural Networks." arXiv preprint arXiv:1811.02695 (2018).
34
-
35
- ## 4. Interactive example
36
- See details in the [notebook](https://github.com/wayneweiqiang/DeepDenoiser/blob/master/docs/example_interactive.ipynb): [example_interactive.ipynb](example_interactive.ipynb)
37
-
38
-
39
- ## 5. Batch prediction
40
- See details in the [notebook](https://github.com/wayneweiqiang/DeepDenoiser/blob/master/docs/example_batch_prediction.ipynb): [example_batch_prediction.ipynb](example_batch_prediction.ipynb)
41
- ## 6. Train
42
- ### Data format
43
-
44
- Required: two csv files for signal and noise, corresponding directories of the npz files.
45
-
46
- The csv file contains four columns: "fname", "itp", "channels"
47
-
48
- The npz file contains four variable: "data", "itp", "channels"
49
-
50
- The shape of "data" variables has a shape of 9001 x 3
51
-
52
- The variables "itp" is the data points of first P arrival times.
53
-
54
- Note: In the demo data, for simplicity we use the waveform before itp as noise samples, so the train_noise_list is same as train_signal_list here.
55
-
56
- ~~~bash
57
- python deepdenoiser/train.py --mode=train --train_signal_dir=./Dataset/train --train_signal_list=./Dataset/train.csv --train_noise_dir=./Dataset/train --train_noise_list=./Dataset/train.csv --batch_size=20
58
- ~~~
59
-
60
- Please let us know of any bugs found in the code. Suggestions and collaborations are welcomed