GaMMA / app.py
zhuwq0's picture
update app.py
ad31c3c
raw
history blame
4.33 kB
import pandas as pd
from fastapi import FastAPI
from pyproj import Proj
from gamma.utils import association
app = FastAPI()
@app.get("/")
def greet_json():
return {"message": "Hello, World!"}
@app.post("/predict/")
def predict(picks: dict, stations: dict, config: dict):
picks = picks["data"]
stations = stations["data"]
picks = pd.DataFrame(picks)
picks["phase_time"] = pd.to_datetime(picks["phase_time"])
stations = pd.DataFrame(stations)
print(stations)
events_, picks_ = run_gamma(picks, stations, config)
picks_ = picks_.to_dict(orient="records")
events_ = events_.to_dict(orient="records")
return {"picks": picks_, "events": events_}
def set_config(region="ridgecrest"):
config = {
"min_picks": 8,
"min_picks_ratio": 0.2,
"max_residual_time": 1.0,
"max_residual_amplitude": 1.0,
"min_score": 0.6,
"min_s_picks": 2,
"min_p_picks": 2,
"use_amplitude": False,
}
# ## Domain
if region.lower() == "ridgecrest":
config.update(
{
"region": "ridgecrest",
"minlongitude": -118.004,
"maxlongitude": -117.004,
"minlatitude": 35.205,
"maxlatitude": 36.205,
"mindepth_km": 0.0,
"maxdepth_km": 30.0,
}
)
lon0 = (config["minlongitude"] + config["maxlongitude"]) / 2
lat0 = (config["minlatitude"] + config["maxlatitude"]) / 2
proj = Proj(f"+proj=sterea +lon_0={lon0} +lat_0={lat0} +units=km")
xmin, ymin = proj(config["minlongitude"], config["minlatitude"])
xmax, ymax = proj(config["maxlongitude"], config["maxlatitude"])
zmin, zmax = config["mindepth_km"], config["maxdepth_km"]
xlim_km = (xmin, xmax)
ylim_km = (ymin, ymax)
zlim_km = (zmin, zmax)
config.update(
{
"xlim_km": xlim_km,
"ylim_km": ylim_km,
"zlim_km": zlim_km,
"proj": proj,
}
)
config.update(
{
"min_picks_per_eq": 5,
"min_p_picks_per_eq": 0,
"min_s_picks_per_eq": 0,
"max_sigma11": 3.0,
"max_sigma22": 1.0,
"max_sigma12": 1.0,
}
)
config["use_dbscan"] = False
config["use_amplitude"] = True
config["oversample_factor"] = 8.0
config["dims"] = ["x(km)", "y(km)", "z(km)"]
config["method"] = "BGMM"
config["ncpu"] = 1
vel = {"p": 6.0, "s": 6.0 / 1.75}
config["vel"] = vel
config["bfgs_bounds"] = (
(xlim_km[0] - 1, xlim_km[1] + 1), # x
(ylim_km[0] - 1, ylim_km[1] + 1), # y
(0, zlim_km[1] + 1), # z
(None, None), # t
)
config["event_index"] = 0
return config
config = set_config()
def run_gamma(picks, stations, config_):
# %%
config.update(config_)
proj = config["proj"]
picks = picks.rename(
columns={
"station_id": "id",
"phase_time": "timestamp",
"phase_type": "type",
"phase_score": "prob",
"phase_amplitude": "amp",
}
)
stations[["x(km)", "y(km)"]] = stations.apply(
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
)
stations["z(km)"] = stations["elevation_m"].apply(lambda x: -x / 1e3)
stations = stations.rename(columns={"station_id": "id"})
events, assignments = association(picks, stations, config, 0, config["method"])
print(events)
events = pd.DataFrame(events)
events[["longitude", "latitude"]] = events.apply(
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
)
events["depth_km"] = events["z(km)"]
events.drop(columns=["x(km)", "y(km)", "z(km)"], inplace=True, errors="ignore")
picks = picks.rename(
columns={
"id": "station_id",
"timestamp": "phase_time",
"type": "phase_type",
"prob": "phase_score",
"amp": "phase_amplitude",
}
)
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
picks = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int})
return events, picks