update app.py
Browse files- app.py +127 -134
- example_fastapi.ipynb +0 -0
app.py
CHANGED
@@ -5,165 +5,158 @@ from typing import Dict, List, Union
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from fastapi import FastAPI
|
8 |
-
from
|
9 |
from pydantic import BaseModel
|
10 |
from pyproj import Proj
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
# STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations_hawaii.csv")
|
16 |
-
# STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations.csv") ## ridgecrest
|
17 |
-
|
18 |
-
|
19 |
-
def default_config(config):
|
20 |
-
if "degree2km" not in config:
|
21 |
-
config["degree2km"] = 111.195
|
22 |
-
if "use_amplitude" not in config:
|
23 |
-
config["use_amplitude"] = True
|
24 |
-
if "use_dbscan" not in config:
|
25 |
-
config["use_dbscan"] = True
|
26 |
-
if "dbscan_eps" not in config:
|
27 |
-
config["dbscan_eps"] = 30.0
|
28 |
-
if "dbscan_min_samples" not in config:
|
29 |
-
config["dbscan_min_samples"] = 3
|
30 |
-
if "method" not in config:
|
31 |
-
config["method"] = "BGMM"
|
32 |
-
if "oversample_factor" not in config:
|
33 |
-
config["oversample_factor"] = 5
|
34 |
-
if "min_picks_per_eq" not in config:
|
35 |
-
config["min_picks_per_eq"] = 10
|
36 |
-
if "max_sigma11" not in config:
|
37 |
-
config["max_sigma11"] = 2.0
|
38 |
-
if "max_sigma22" not in config:
|
39 |
-
config["max_sigma22"] = 1.0
|
40 |
-
if "max_sigma12" not in config:
|
41 |
-
config["max_sigma12"] = 1.0
|
42 |
-
if "dims" not in config:
|
43 |
-
config["dims"] = ["x(km)", "y(km)", "z(km)"]
|
44 |
-
return config
|
45 |
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
|
|
|
69 |
|
70 |
-
class Data(BaseModel):
|
71 |
-
picks: List[Dict[str, Union[float, str]]]
|
72 |
-
stations: List[Dict[str, Union[float, str]]]
|
73 |
-
config: Dict[str, Union[List[float], List[int], List[str], float, int, str]]
|
74 |
|
|
|
75 |
|
76 |
-
class Pick(BaseModel):
|
77 |
-
picks: List[Dict[str, Union[float, str]]]
|
78 |
|
|
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
proj =
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
stations[["x(km)", "y(km)"]] = stations.apply(
|
85 |
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
|
86 |
)
|
87 |
-
stations["z(km)"] = stations["
|
88 |
-
|
89 |
-
print(f"{len(picks)} picks, {len(stations)} stations")
|
90 |
-
catalogs, assignments = association(picks, stations, config, 0, config["method"])
|
91 |
|
92 |
-
|
93 |
-
catalogs,
|
94 |
-
columns=["time"]
|
95 |
-
+ config["dims"]
|
96 |
-
+ ["magnitude", "sigma_time", "sigma_amp", "cov_time_amp", "event_index", "gamma_score"],
|
97 |
-
)
|
98 |
-
if len(catalogs) == 0:
|
99 |
-
print("No events associated")
|
100 |
-
return pd.DataFrame(), pd.DataFrame()
|
101 |
|
102 |
-
|
|
|
|
|
103 |
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
|
104 |
)
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
|
108 |
-
|
109 |
-
|
110 |
-
return catalogs, picks_gamma
|
111 |
-
|
112 |
-
|
113 |
-
# @app.post("/predict_stream")
|
114 |
-
# def predict(data: Pick):
|
115 |
-
|
116 |
-
# picks = pd.DataFrame(data.picks)
|
117 |
-
# if len(picks) == 0:
|
118 |
-
# return {"catalog": [], "picks": []}
|
119 |
-
|
120 |
-
# catalogs, picks_gamma = run_gamma(data, config, stations)
|
121 |
-
|
122 |
-
# return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")}
|
123 |
-
|
124 |
-
|
125 |
-
@app.post("/predict")
|
126 |
-
def predict(data: Data):
|
127 |
-
|
128 |
-
picks = pd.DataFrame(data.picks)
|
129 |
-
if len(picks) == 0:
|
130 |
-
return {"catalog": [], "picks": []}
|
131 |
-
|
132 |
-
stations = pd.DataFrame(data.stations)
|
133 |
-
if len(stations) == 0:
|
134 |
-
return {"catalog": [], "picks": []}
|
135 |
-
|
136 |
-
assert "latitude" in stations
|
137 |
-
assert "longitude" in stations
|
138 |
-
assert "elevation(m)" in stations
|
139 |
-
|
140 |
-
config = data.config
|
141 |
-
config = default_config(config)
|
142 |
-
|
143 |
-
if "xlim_degree" not in config:
|
144 |
-
config["xlim_degree"] = (stations["longitude"].min(), stations["longitude"].max())
|
145 |
-
if "ylim_degree" not in config:
|
146 |
-
config["ylim_degree"] = (stations["latitude"].min(), stations["latitude"].max())
|
147 |
-
if "center" not in config:
|
148 |
-
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])]
|
149 |
-
if "x(km)" not in config:
|
150 |
-
config["x(km)"] = (
|
151 |
-
(np.array(config["xlim_degree"]) - config["center"][0])
|
152 |
-
* config["degree2km"]
|
153 |
-
* np.cos(np.deg2rad(config["center"][1]))
|
154 |
-
)
|
155 |
-
if "y(km)" not in config:
|
156 |
-
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"]
|
157 |
-
if "z(km)" not in config:
|
158 |
-
config["z(km)"] = (0, 41)
|
159 |
-
if "bfgs_bounds" not in config:
|
160 |
-
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]]
|
161 |
-
|
162 |
-
catalogs, picks_gamma = run_gamma(picks, config, stations)
|
163 |
-
|
164 |
-
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")}
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
def healthz():
|
169 |
-
return {"status": "ok"}
|
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from fastapi import FastAPI
|
8 |
+
from kafka import KafkaProducer
|
9 |
from pydantic import BaseModel
|
10 |
from pyproj import Proj
|
11 |
|
12 |
+
from gamma.utils import association
|
13 |
|
14 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
+
@app.get("/")
|
18 |
+
def greet_json():
|
19 |
+
return {"message": "Hello, World!"}
|
20 |
+
|
21 |
+
|
22 |
+
@app.post("/predict/")
|
23 |
+
def predict(picks: dict, stations: dict, config: dict):
|
24 |
+
picks = picks["data"]
|
25 |
+
stations = stations["data"]
|
26 |
+
picks = pd.DataFrame(picks)
|
27 |
+
picks["phase_time"] = pd.to_datetime(picks["phase_time"])
|
28 |
+
stations = pd.DataFrame(stations)
|
29 |
+
print(stations)
|
30 |
+
events_, picks_ = run_gamma(picks, stations, config)
|
31 |
+
picks_ = picks_.to_dict(orient="records")
|
32 |
+
events_ = events_.to_dict(orient="records")
|
33 |
+
|
34 |
+
return {"picks": picks_, "events": events_}
|
35 |
+
|
36 |
+
|
37 |
+
def set_config(region="ridgecrest"):
|
38 |
+
|
39 |
+
config = {
|
40 |
+
"min_picks": 8,
|
41 |
+
"min_picks_ratio": 0.2,
|
42 |
+
"max_residual_time": 1.0,
|
43 |
+
"max_residual_amplitude": 1.0,
|
44 |
+
"min_score": 0.6,
|
45 |
+
"min_s_picks": 2,
|
46 |
+
"min_p_picks": 2,
|
47 |
+
"use_amplitude": False,
|
48 |
+
}
|
49 |
+
|
50 |
+
# ## Domain
|
51 |
+
if region.lower() == "ridgecrest":
|
52 |
+
config.update(
|
53 |
+
{
|
54 |
+
"region": "ridgecrest",
|
55 |
+
"minlongitude": -118.004,
|
56 |
+
"maxlongitude": -117.004,
|
57 |
+
"minlatitude": 35.205,
|
58 |
+
"maxlatitude": 36.205,
|
59 |
+
"mindepth_km": 0.0,
|
60 |
+
"maxdepth_km": 30.0,
|
61 |
+
}
|
62 |
+
)
|
63 |
|
64 |
+
lon0 = (config["minlongitude"] + config["maxlongitude"]) / 2
|
65 |
+
lat0 = (config["minlatitude"] + config["maxlatitude"]) / 2
|
66 |
+
proj = Proj(f"+proj=sterea +lon_0={lon0} +lat_0={lat0} +units=km")
|
67 |
+
xmin, ymin = proj(config["minlongitude"], config["minlatitude"])
|
68 |
+
xmax, ymax = proj(config["maxlongitude"], config["maxlatitude"])
|
69 |
+
zmin, zmax = config["mindepth_km"], config["maxdepth_km"]
|
70 |
+
xlim_km = (xmin, xmax)
|
71 |
+
ylim_km = (ymin, ymax)
|
72 |
+
zlim_km = (zmin, zmax)
|
73 |
+
|
74 |
+
config.update(
|
75 |
+
{
|
76 |
+
"xlim_km": xlim_km,
|
77 |
+
"ylim_km": ylim_km,
|
78 |
+
"zlim_km": zlim_km,
|
79 |
+
"proj": proj,
|
80 |
+
}
|
81 |
+
)
|
82 |
|
83 |
+
config.update(
|
84 |
+
{
|
85 |
+
"min_picks_per_eq": 5,
|
86 |
+
"min_p_picks_per_eq": 0,
|
87 |
+
"min_s_picks_per_eq": 0,
|
88 |
+
"max_sigma11": 3.0,
|
89 |
+
"max_sigma22": 1.0,
|
90 |
+
"max_sigma12": 1.0,
|
91 |
+
}
|
92 |
+
)
|
93 |
|
94 |
+
config["use_dbscan"] = False
|
95 |
+
config["use_amplitude"] = True
|
96 |
+
config["oversample_factor"] = 8.0
|
97 |
+
config["dims"] = ["x(km)", "y(km)", "z(km)"]
|
98 |
+
config["method"] = "BGMM"
|
99 |
+
config["ncpu"] = 1
|
100 |
+
vel = {"p": 6.0, "s": 6.0 / 1.75}
|
101 |
+
config["vel"] = vel
|
102 |
+
|
103 |
+
config["bfgs_bounds"] = (
|
104 |
+
(xlim_km[0] - 1, xlim_km[1] + 1), # x
|
105 |
+
(ylim_km[0] - 1, ylim_km[1] + 1), # y
|
106 |
+
(0, zlim_km[1] + 1), # z
|
107 |
+
(None, None), # t
|
108 |
+
)
|
109 |
|
110 |
+
config["event_index"] = 0
|
111 |
|
112 |
+
return config
|
113 |
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
config = set_config()
|
116 |
|
|
|
|
|
117 |
|
118 |
+
def run_gamma(picks, stations, config_):
|
119 |
|
120 |
+
# %%
|
121 |
+
config.update(config_)
|
122 |
|
123 |
+
proj = config["proj"]
|
124 |
|
125 |
+
picks = picks.rename(
|
126 |
+
columns={
|
127 |
+
"station_id": "id",
|
128 |
+
"phase_time": "timestamp",
|
129 |
+
"phase_type": "type",
|
130 |
+
"phase_score": "prob",
|
131 |
+
"phase_amplitude": "amp",
|
132 |
+
}
|
133 |
+
)
|
134 |
stations[["x(km)", "y(km)"]] = stations.apply(
|
135 |
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
|
136 |
)
|
137 |
+
stations["z(km)"] = stations["elevation_m"].apply(lambda x: -x / 1e3)
|
138 |
+
stations = stations.rename(columns={"station_id": "id"})
|
|
|
|
|
139 |
|
140 |
+
events, assignments = association(picks, stations, config, 0, config["method"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
print(events)
|
143 |
+
events = pd.DataFrame(events)
|
144 |
+
events[["longitude", "latitude"]] = events.apply(
|
145 |
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
|
146 |
)
|
147 |
+
events["depth_km"] = events["z(km)"]
|
148 |
+
events.drop(columns=["x(km)", "y(km)", "z(km)"], inplace=True, errors="ignore")
|
149 |
+
picks = picks.rename(
|
150 |
+
columns={
|
151 |
+
"id": "station_id",
|
152 |
+
"timestamp": "phase_time",
|
153 |
+
"type": "phase_type",
|
154 |
+
"prob": "phase_score",
|
155 |
+
"amp": "phase_amplitude",
|
156 |
+
}
|
157 |
+
)
|
158 |
|
159 |
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
|
160 |
+
picks = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
return events, picks
|
|
|
|
example_fastapi.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|