update
Browse files- app.py +200 -3
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,7 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from json import dumps
|
3 |
+
from typing import Dict, List, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
from fastapi import FastAPI
|
8 |
+
from gamma.utils import association
|
9 |
+
from kafka import KafkaProducer
|
10 |
+
from pydantic import BaseModel
|
11 |
+
from pyproj import Proj
|
12 |
+
|
13 |
+
# Kafak producer
|
14 |
+
use_kafka = False
|
15 |
+
|
16 |
+
try:
|
17 |
+
print("Connecting to k8s kafka")
|
18 |
+
BROKER_URL = "quakeflow-kafka-headless:9092"
|
19 |
+
# BROKER_URL = "34.83.137.139:9094"
|
20 |
+
producer = KafkaProducer(
|
21 |
+
bootstrap_servers=[BROKER_URL],
|
22 |
+
key_serializer=lambda x: dumps(x).encode("utf-8"),
|
23 |
+
value_serializer=lambda x: dumps(x).encode("utf-8"),
|
24 |
+
)
|
25 |
+
use_kafka = True
|
26 |
+
print("k8s kafka connection success!")
|
27 |
+
except BaseException:
|
28 |
+
print("k8s Kafka connection error")
|
29 |
+
try:
|
30 |
+
print("Connecting to local kafka")
|
31 |
+
producer = KafkaProducer(
|
32 |
+
bootstrap_servers=["localhost:9092"],
|
33 |
+
key_serializer=lambda x: dumps(x).encode("utf-8"),
|
34 |
+
value_serializer=lambda x: dumps(x).encode("utf-8"),
|
35 |
+
)
|
36 |
+
use_kafka = True
|
37 |
+
print("local kafka connection success!")
|
38 |
+
except BaseException:
|
39 |
+
print("local Kafka connection error")
|
40 |
+
print(f"Kafka status: {use_kafka}")
|
41 |
|
42 |
app = FastAPI()
|
43 |
|
44 |
+
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
|
45 |
+
STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations_hawaii.csv")
|
46 |
+
# STATION_CSV = os.path.join(PROJECT_ROOT, "tests/stations.csv") ## ridgecrest
|
47 |
+
|
48 |
+
|
49 |
+
def default_config(config):
|
50 |
+
if "degree2km" not in config:
|
51 |
+
config["degree2km"] = 111.195
|
52 |
+
if "use_amplitude" not in config:
|
53 |
+
config["use_amplitude"] = True
|
54 |
+
if "use_dbscan" not in config:
|
55 |
+
config["use_dbscan"] = True
|
56 |
+
if "dbscan_eps" not in config:
|
57 |
+
config["dbscan_eps"] = 30.0
|
58 |
+
if "dbscan_min_samples" not in config:
|
59 |
+
config["dbscan_min_samples"] = 3
|
60 |
+
if "method" not in config:
|
61 |
+
config["method"] = "BGMM"
|
62 |
+
if "oversample_factor" not in config:
|
63 |
+
config["oversample_factor"] = 5
|
64 |
+
if "min_picks_per_eq" not in config:
|
65 |
+
config["min_picks_per_eq"] = 10
|
66 |
+
if "max_sigma11" not in config:
|
67 |
+
config["max_sigma11"] = 2.0
|
68 |
+
if "max_sigma22" not in config:
|
69 |
+
config["max_sigma22"] = 1.0
|
70 |
+
if "max_sigma12" not in config:
|
71 |
+
config["max_sigma12"] = 1.0
|
72 |
+
if "dims" not in config:
|
73 |
+
config["dims"] = ["x(km)", "y(km)", "z(km)"]
|
74 |
+
return config
|
75 |
+
|
76 |
+
|
77 |
+
## set config
|
78 |
+
config = {"xlim_degree": [-156.32, -154.32], "ylim_degree": [18.39, 20.39], "z(km)": [0, 41]} ## hawaii
|
79 |
+
# config = {'xlim_degree': [-118.004, -117.004], 'ylim_degree': [35.205, 36.205], "z(km)": [0, 41]} ## ridgecrest
|
80 |
+
|
81 |
+
config = default_config(config)
|
82 |
+
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])]
|
83 |
+
config["x(km)"] = (np.array(config["xlim_degree"]) - config["center"][0]) * config["degree2km"]
|
84 |
+
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"]
|
85 |
+
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]]
|
86 |
+
|
87 |
+
for k, v in config.items():
|
88 |
+
print(f"{k}: {v}")
|
89 |
+
|
90 |
+
## read stations
|
91 |
+
stations = pd.read_csv(STATION_CSV, delimiter="\t")
|
92 |
+
stations = stations.rename(columns={"station": "id"})
|
93 |
+
stations["x(km)"] = stations["longitude"].apply(lambda x: (x - config["center"][0]) * config["degree2km"])
|
94 |
+
stations["y(km)"] = stations["latitude"].apply(lambda x: (x - config["center"][1]) * config["degree2km"])
|
95 |
+
stations["z(km)"] = stations["elevation(m)"].apply(lambda x: -x / 1e3)
|
96 |
+
|
97 |
+
print(stations)
|
98 |
+
|
99 |
+
|
100 |
+
class Data(BaseModel):
|
101 |
+
picks: List[Dict[str, Union[float, str]]]
|
102 |
+
stations: List[Dict[str, Union[float, str]]]
|
103 |
+
config: Dict[str, Union[List[float], List[int], List[str], float, int, str]]
|
104 |
+
|
105 |
+
|
106 |
+
class Pick(BaseModel):
|
107 |
+
picks: List[Dict[str, Union[float, str]]]
|
108 |
+
|
109 |
+
|
110 |
+
def run_gamma(picks, config, stations):
|
111 |
+
|
112 |
+
proj = Proj(f"+proj=sterea +lon_0={config['center'][0]} +lat_0={config['center'][1]} +units=km")
|
113 |
+
|
114 |
+
stations[["x(km)", "y(km)"]] = stations.apply(
|
115 |
+
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
|
116 |
+
)
|
117 |
+
stations["z(km)"] = stations["elevation(m)"].apply(lambda x: -x / 1e3)
|
118 |
+
|
119 |
+
catalogs, assignments = association(picks, stations, config, 0, config["method"])
|
120 |
+
|
121 |
+
catalogs = pd.DataFrame(
|
122 |
+
catalogs,
|
123 |
+
columns=["time"]
|
124 |
+
+ config["dims"]
|
125 |
+
+ ["magnitude", "sigma_time", "sigma_amp", "cov_time_amp", "event_index", "gamma_score"],
|
126 |
+
)
|
127 |
+
catalogs[["longitude", "latitude"]] = catalogs.apply(
|
128 |
+
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
|
129 |
+
)
|
130 |
+
catalogs["depth(m)"] = catalogs["z(km)"].apply(lambda x: x * 1e3)
|
131 |
+
|
132 |
+
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
|
133 |
+
picks_gamma = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int})
|
134 |
+
|
135 |
+
return catalogs, picks_gamma
|
136 |
+
|
137 |
+
|
138 |
+
@app.post("/predict_stream")
|
139 |
+
def predict(data: Pick):
|
140 |
+
|
141 |
+
picks = pd.DataFrame(data.picks)
|
142 |
+
if len(picks) == 0:
|
143 |
+
return {"catalog": [], "picks": []}
|
144 |
+
|
145 |
+
catalogs, picks_gamma = run_gamma(data, config, stations)
|
146 |
+
|
147 |
+
if use_kafka:
|
148 |
+
print("Push events to kafka...")
|
149 |
+
for event in catalogs.to_dict(orient="records"):
|
150 |
+
producer.send("gmma_events", key=event["time"], value=event)
|
151 |
+
|
152 |
+
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")}
|
153 |
+
|
154 |
+
|
155 |
+
@app.post("/predict")
|
156 |
+
def predict(data: Data):
|
157 |
+
|
158 |
+
picks = pd.DataFrame(data.picks)
|
159 |
+
if len(picks) == 0:
|
160 |
+
return {"catalog": [], "picks": []}
|
161 |
+
|
162 |
+
stations = pd.DataFrame(data.stations)
|
163 |
+
if len(stations) == 0:
|
164 |
+
return {"catalog": [], "picks": []}
|
165 |
+
|
166 |
+
assert "latitude" in stations
|
167 |
+
assert "longitude" in stations
|
168 |
+
assert "elevation(m)" in stations
|
169 |
+
|
170 |
+
config = data.config
|
171 |
+
config = default_config(config)
|
172 |
+
|
173 |
+
if "xlim_degree" not in config:
|
174 |
+
config["xlim_degree"] = (stations["longitude"].min(), stations["longitude"].max())
|
175 |
+
if "ylim_degree" not in config:
|
176 |
+
config["ylim_degree"] = (stations["latitude"].min(), stations["latitude"].max())
|
177 |
+
if "center" not in config:
|
178 |
+
config["center"] = [np.mean(config["xlim_degree"]), np.mean(config["ylim_degree"])]
|
179 |
+
if "x(km)" not in config:
|
180 |
+
config["x(km)"] = (
|
181 |
+
(np.array(config["xlim_degree"]) - config["center"][0])
|
182 |
+
* config["degree2km"]
|
183 |
+
* np.cos(np.deg2rad(config["center"][1]))
|
184 |
+
)
|
185 |
+
if "y(km)" not in config:
|
186 |
+
config["y(km)"] = (np.array(config["ylim_degree"]) - config["center"][1]) * config["degree2km"]
|
187 |
+
if "z(km)" not in config:
|
188 |
+
config["z(km)"] = (0, 41)
|
189 |
+
if "bfgs_bounds" not in config:
|
190 |
+
config["bfgs_bounds"] = [list(config[x]) for x in config["dims"]] + [[None, None]]
|
191 |
+
|
192 |
+
catalogs, picks_gamma = run_gamma(picks, config, stations)
|
193 |
+
|
194 |
+
if use_kafka:
|
195 |
+
print("Push events to kafka...")
|
196 |
+
for event in catalogs.to_dict(orient="records"):
|
197 |
+
producer.send("gamma_events", key=event["time"], value=event)
|
198 |
+
|
199 |
+
return {"catalog": catalogs.to_dict(orient="records"), "picks": picks_gamma.to_dict(orient="records")}
|
200 |
+
|
201 |
+
|
202 |
+
@app.get("/healthz")
|
203 |
+
def healthz():
|
204 |
+
return {"status": "ok"}
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
fastapi
|
2 |
-
uvicorn[standard]
|
|
|
|
1 |
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
gmma
|