File size: 3,045 Bytes
7bb513d 1b6e4e8 7bb513d 1b6e4e8 7bb513d 1b6e4e8 7bb513d 1b6e4e8 7bb513d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import obspy\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(3000, 3)\n"
]
}
],
"source": [
"waveform = obspy.read()\n",
"array = np.array([x.data for x in waveform]).T\n",
"print(array.shape)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(3000, 3)\n"
]
}
],
"source": [
"print(array.shape)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[[{'file_name': '0000', 'station_id': '0000', 'begin_time': '1970-01-01T00:00:00.000+00:00', 'phase_index': 573, 'phase_time': '1970-01-01T00:00:05.730+00:00', 'phase_score': 0.999, 'phase_type': 'S', 'dt': 0.01}], {'label': 'debug', 'score': 0.1}]]\n"
]
}
],
"source": [
"import requests\n",
"import numpy as np\n",
"import json\n",
"\n",
"API_URL = \"https://api-inference.huggingface.co/models/zhuwq/PhaseNet\"\n",
"# API_URL = \"https://api-inference.huggingface.co/models/zhuwq/test-model\"\n",
"headers = {\"Authorization\": \"Bearer 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\"}\n",
"\n",
"def query(payload):\n",
" response = requests.post(API_URL, headers=headers, json=payload)\n",
" return response.json()\n",
" # return json.loads(response.content.decode(\"utf-8\"))\n",
"\n",
"# array = np.random.rand(10, 3).tolist()\n",
"inputs = json.dumps(array.tolist())\n",
"data = {\n",
"\t# \"inputs\": \"I like you. I love you\",\n",
" \"inputs\": inputs,\n",
" \"options\":{\"wait_for_model\": True},\n",
"}\n",
"\n",
"output = query(data)\n",
"print(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "0efb5d07c150d814a79610ed835fac9f37a29f75f64726a0e33cb3dca03bca5e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|