File size: 2,863 Bytes
7bb513d
 
 
 
e68aadc
1b6e4e8
 
 
 
 
 
 
 
 
e68aadc
1b6e4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68aadc
 
 
 
 
 
 
 
 
 
1b6e4e8
 
 
 
 
 
e68aadc
7bb513d
 
 
 
 
 
 
 
e68aadc
 
7bb513d
 
 
 
 
 
 
1b6e4e8
e68aadc
7bb513d
e68aadc
 
 
 
 
7bb513d
 
 
 
 
1b6e4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bb513d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "import obspy\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(3000, 3)\n"
     ]
    }
   ],
   "source": [
    "waveform = obspy.read()\n",
    "array = np.array([x.data for x in waveform]).T\n",
    "print(array.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "waveform.write(\"test.mseed\", format=\"MSEED\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[{'label': 'I like you. I love you', 'score': 0.2}, {'args': []}, {}]]\n"
     ]
    }
   ],
   "source": [
    "import requests\n",
    "import numpy as np\n",
    "import json\n",
    "\n",
    "# API_URL = \"https://api-inference.huggingface.co/models/zhuwq/PhaseNet\"\n",
    "API_URL = \"https://api-inference.huggingface.co/models/zhuwq/test-model\"\n",
    "headers = {\"Authorization\": \"Bearer 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\"}\n",
    "\n",
    "def query(payload):\n",
    "    response = requests.post(API_URL, headers=headers, json=payload)\n",
    "    return response.json()\n",
    "    # return json.loads(response.content.decode(\"utf-8\"))\n",
    "\n",
    "# array = np.random.rand(10, 3).tolist()\n",
    "# inputs = json.dumps(array.tolist())\n",
    "data = {\n",
    "\t\"inputs\": \"I like you. I love you\",\n",
    "    \"arg\": 1,\n",
    "    # \"inputs\": inputs,\n",
    "    \"options\": {\"wait_for_model\": True},\n",
    "    \"parameters\": {\"max_length\": 500}\n",
    "}\n",
    "\n",
    "output = query(data)\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "0efb5d07c150d814a79610ed835fac9f37a29f75f64726a0e33cb3dca03bca5e"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}