zhuwq0 commited on
Commit
300fbbb
·
1 Parent(s): 85a8797
Files changed (2) hide show
  1. app.py +98 -0
  2. tests/test.mseed +3 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ import os
5
+ import obspy
6
+ import pandas as pd
7
+ from phasenet.model import ModelConfig, UNet
8
+ from phasenet.postprocess import extract_picks
9
+
10
+ tf.compat.v1.disable_eager_execution()
11
+ tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
12
+
13
+ ## load model
14
+ tf.compat.v1.reset_default_graph()
15
+ model = UNet(mode="pred")
16
+ sess_config = tf.compat.v1.ConfigProto()
17
+ sess_config.gpu_options.allow_growth = True
18
+ sess = tf.compat.v1.Session(config=sess_config)
19
+ saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
20
+ init = tf.compat.v1.global_variables_initializer()
21
+ sess.run(init)
22
+ latest_check_point = tf.train.latest_checkpoint("./model/190703-214543")
23
+ print(f"restoring model {latest_check_point}")
24
+ saver.restore(sess, latest_check_point)
25
+
26
+
27
+ def normalize(vec):
28
+ mu = np.mean(vec, axis=1, keepdims=True)
29
+ std = np.std(vec, axis=1, keepdims=True)
30
+ std[std == 0] = 1.0
31
+ vec = (vec - mu) / std
32
+ return vec
33
+
34
+
35
+ def reshape_input(vec):
36
+ if len(vec.shape) == 2:
37
+ vec = vec[np.newaxis, :, np.newaxis, :]
38
+ elif len(vec.shape) == 3:
39
+ vec = vec[np.newaxis, :, :, :]
40
+ else:
41
+ pass
42
+ return vec
43
+
44
+
45
+ # inference fn
46
+ def predict(inputs):
47
+
48
+ picks = []
49
+ for input in inputs:
50
+ file = input.name # if not isinstance(input, str) else input
51
+ mseed = obspy.read(file)
52
+ begin_time = min([tr.stats.starttime for tr in mseed])
53
+ end_time = max([tr.stats.endtime for tr in mseed])
54
+ mseed = mseed.trim(begin_time, end_time)
55
+ vec = np.asarray([tr.data for tr in mseed]).T
56
+ vec = reshape_input(vec) # (nb, nt, nsta, nch)
57
+ vec = normalize(vec)
58
+
59
+ feed = {model.X: vec, model.drop_rate: 0, model.is_training: False}
60
+ preds = sess.run(model.preds, feed_dict=feed)
61
+ tmp_picks = extract_picks(
62
+ preds, begin_times=[begin_time.datetime.isoformat(timespec="milliseconds")]
63
+ ) # , station_ids=data.id, begin_times=data.timestamp, waveforms=vec_raw)
64
+ tmp_picks = [
65
+ {
66
+ "phase_time": x["phase_time"],
67
+ "phase_index": x["phase_index"],
68
+ "phase_score": x["phase_score"],
69
+ "phase_type": x["phase_type"],
70
+ }
71
+ for x in tmp_picks
72
+ ]
73
+
74
+ picks.extend(tmp_picks)
75
+
76
+ picks = pd.DataFrame(picks)
77
+ picks.to_csv("picks.csv", index=False)
78
+
79
+ return picks, "picks.csv"
80
+
81
+
82
+ # gradio components
83
+ inputs = gr.File(file_count="multiple")
84
+ # outputs = gr.outputs.JSON()
85
+ outputs = [gr.Dataframe(headers=["phase_time", "phase_score", "phase_type"]), gr.File()]
86
+ gr.Interface(
87
+ predict,
88
+ inputs=inputs,
89
+ outputs=outputs,
90
+ title="PhaseNet",
91
+ description="PhaseNet",
92
+ examples=[[[os.path.join(os.path.dirname(__file__), "tests/test.mseed")]]],
93
+ allow_flagging="never",
94
+ ).launch()
95
+
96
+ # if __name__ == "__main__":
97
+ # picks = predict(["tests/test.mseed"])
98
+ # print(picks)
tests/test.mseed ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53efa249668e9abddded9798cc3d8d450e5c1f841537170c2804a4347cbe2dd1
3
+ size 73728