update to support gradio_client
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
import os
|
5 |
import obspy
|
6 |
import pandas as pd
|
|
|
|
|
7 |
from phasenet.model import ModelConfig, UNet
|
8 |
from phasenet.postprocess import extract_picks
|
9 |
|
@@ -43,11 +47,17 @@ def reshape_input(vec):
|
|
43 |
|
44 |
|
45 |
# inference fn
|
46 |
-
def predict(
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
picks = []
|
49 |
-
for
|
50 |
-
file =
|
51 |
mseed = obspy.read(file)
|
52 |
begin_time = min([tr.stats.starttime for tr in mseed])
|
53 |
end_time = max([tr.stats.endtime for tr in mseed])
|
@@ -73,16 +83,19 @@ def predict(inputs):
|
|
73 |
|
74 |
picks.extend(tmp_picks)
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
|
79 |
-
return picks, "picks.csv"
|
80 |
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
inputs = gr.File(file_count="multiple")
|
84 |
-
# outputs = gr.outputs.JSON()
|
85 |
-
outputs = [gr.Dataframe(headers=["phase_time", "phase_score", "phase_type"]), gr.File()]
|
86 |
gr.Interface(
|
87 |
predict,
|
88 |
inputs=inputs,
|
@@ -91,7 +104,7 @@ gr.Interface(
|
|
91 |
description="PhaseNet",
|
92 |
examples=[[[os.path.join(os.path.dirname(__file__), "tests/test.mseed")]]],
|
93 |
allow_flagging="never",
|
94 |
-
).launch()
|
95 |
|
96 |
# if __name__ == "__main__":
|
97 |
# picks = predict(["tests/test.mseed"])
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
import gradio as gr
|
|
|
6 |
import numpy as np
|
|
|
7 |
import obspy
|
8 |
import pandas as pd
|
9 |
+
import tensorflow as tf
|
10 |
+
|
11 |
from phasenet.model import ModelConfig, UNet
|
12 |
from phasenet.postprocess import extract_picks
|
13 |
|
|
|
47 |
|
48 |
|
49 |
# inference fn
|
50 |
+
def predict(mseeds, waveforms, stations):
|
51 |
+
if len(stations) > 0:
|
52 |
+
stations = json.loads(stations)
|
53 |
+
print(f"{len(stations)}: {stations = }")
|
54 |
+
if len(waveforms) > 0:
|
55 |
+
waveforms = json.loads(waveforms)
|
56 |
+
waveforms = np.array(waveforms)
|
57 |
+
print(f"{waveforms.shape = }")
|
58 |
picks = []
|
59 |
+
for mseed in mseeds:
|
60 |
+
file = mseed.name # if not isinstance(input, str) else input
|
61 |
mseed = obspy.read(file)
|
62 |
begin_time = min([tr.stats.starttime for tr in mseed])
|
63 |
end_time = max([tr.stats.endtime for tr in mseed])
|
|
|
83 |
|
84 |
picks.extend(tmp_picks)
|
85 |
|
86 |
+
picks_df = pd.DataFrame(picks)
|
87 |
+
picks_df.to_csv("picks.csv", index=False)
|
88 |
+
|
89 |
+
return picks_df, "picks.csv", json.dumps(picks)
|
90 |
|
|
|
91 |
|
92 |
+
inputs = [
|
93 |
+
gr.File(label="mseed file", file_count="multiple"),
|
94 |
+
gr.Textbox(label="waveform", visible=False),
|
95 |
+
gr.Textbox(label="stations", visible=False),
|
96 |
+
]
|
97 |
|
98 |
+
outputs = [gr.Dataframe(headers=["phase_time", "phase_score", "phase_type"]), gr.File(), gr.Textbox(visible=False)]
|
|
|
|
|
|
|
99 |
gr.Interface(
|
100 |
predict,
|
101 |
inputs=inputs,
|
|
|
104 |
description="PhaseNet",
|
105 |
examples=[[[os.path.join(os.path.dirname(__file__), "tests/test.mseed")]]],
|
106 |
allow_flagging="never",
|
107 |
+
).queue().launch()
|
108 |
|
109 |
# if __name__ == "__main__":
|
110 |
# picks = predict(["tests/test.mseed"])
|