File size: 3,166 Bytes
466a8f2
f8402f9
 
 
ebbe380
87c0dbc
b7ab123
466a8f2
87c0dbc
f8402f9
 
ebbe380
 
 
 
 
 
 
 
 
 
 
466a8f2
f8402f9
 
 
 
 
 
 
 
 
 
 
b7ab123
 
 
 
 
 
 
 
 
 
 
 
 
 
f8402f9
87c0dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
466a8f2
 
 
 
 
ebbe380
f8402f9
ebbe380
f8402f9
 
 
 
 
 
b7ab123
 
466a8f2
 
 
ebbe380
 
466a8f2
 
 
 
 
 
 
 
ebbe380
466a8f2
 
 
 
ebbe380
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from enum import Enum
from io import StringIO
from urllib import request

import streamlit as st
import torch
from Bio.PDB import PDBParser, Polypeptide, Structure
from tape import ProteinBertModel, TAPETokenizer
from transformers import T5EncoderModel, T5Tokenizer


class ModelType(str, Enum):
    TAPE_BERT = "bert-base"
    PROT_T5 = "prot_t5_xl_half_uniref50-enc"


class Model:
    def __init__(self, name, layers, heads):
        self.name: ModelType = name
        self.layers: int = layers
        self.heads: int = heads


def get_structure(pdb_code: str) -> Structure:
    """
    Get structure from PDB
    """
    pdb_url = f"https://files.rcsb.org/download/{pdb_code}.pdb"
    pdb_data = request.urlopen(pdb_url).read().decode("utf-8")
    file = StringIO(pdb_data)
    parser = PDBParser()
    structure = parser.get_structure(pdb_code, file)
    return structure

def get_sequences(structure: Structure) -> list[str]:
    """
    Get list of sequences with residues on a single letter format

    Residues not in the standard 20 amino acids are replaced with X
    """
    sequences = []
    for seq in structure.get_chains():
        residues = [residue.get_resname() for residue in seq.get_residues()]
        # TODO ask if using protein_letters_3to1_extended makes sense
        residues_single_letter = map(lambda x: Polypeptide.protein_letters_3to1.get(x, "X"), residues)

        sequences.append(list(residues_single_letter))
    return sequences

def get_protT5() -> tuple[T5Tokenizer, T5EncoderModel]:
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    tokenizer = T5Tokenizer.from_pretrained(
        "Rostlab/prot_t5_xl_half_uniref50-enc", do_lower_case=False
    )

    model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc").to(
        device
    )

    model.full() if device == "cpu" else model.half()

    return tokenizer, model

def get_tape_bert() -> tuple[TAPETokenizer, ProteinBertModel]:
    tokenizer = TAPETokenizer()
    model = ProteinBertModel.from_pretrained('bert-base', output_attentions=True)
    return tokenizer, model

@st.cache
def get_attention(
    pdb_code: str, model: ModelType = ModelType.TAPE_BERT  
):
    """
    Get attention from T5
    """
    # fetch structure
    structure = get_structure(pdb_code)
    # Get list of sequences
    sequences = get_sequences(structure)
    # TODO handle multiple sequences
    sequence = sequences[0]

    match model.name:
        case ModelType.TAPE_BERT:
            tokenizer, model = get_tape_bert()
            token_idxs = tokenizer.encode(sequence).tolist()
            inputs = torch.tensor(token_idxs).unsqueeze(0)
            with torch.no_grad():
                attns = model(inputs)[-1]
                # Remove attention from <CLS> (first) and <SEP> (last) token
            attns = [attn[:, :, 1:-1, 1:-1] for attn in attns]
            attns = torch.stack([attn.squeeze(0) for attn in attns])
        case ModelType.PROT_T5:
            # Space separate sequences
            sequences = [" ".join(sequence) for sequence in sequences]
            tokenizer, model = get_protT5()

    return attns