Spaces:
Sleeping
Sleeping
import torch | |
from Bio.PDB.Structure import Structure | |
from transformers import T5EncoderModel, T5Tokenizer | |
from protention.attention import (ModelType, get_attention, get_protT5, | |
get_sequences, get_structure) | |
def test_get_structure(): | |
pdb_id = "1AKE" | |
structure = get_structure(pdb_id) | |
assert structure is not None | |
assert isinstance(structure, Structure) | |
def test_get_sequences(): | |
pdb_id = "1AKE" | |
structure = get_structure(pdb_id) | |
sequences = get_sequences(structure) | |
assert sequences is not None | |
assert len(sequences) == 2 | |
A, B = sequences | |
assert A[:3] == ["M", "R", "I"] | |
def test_get_protT5(): | |
result = get_protT5() | |
assert result is not None | |
assert isinstance(result, tuple) | |
tokenizer, model = result | |
assert isinstance(tokenizer, T5Tokenizer) | |
assert isinstance(model, T5EncoderModel) | |
def test_get_attention_tape(): | |
result = get_attention("1AKE", model=ModelType.tape_bert) | |
assert result is not None | |
assert result.shape == torch.Size([12,12,456,456]) | |