File size: 1,867 Bytes
0a2a6e8
7057432
 
74659c1
d134913
c1b87b7
78b6da7
39b8583
78b6da7
 
 
39b8583
d2dcd28
78b6da7
 
b837a19
 
 
 
 
f281718
 
78b6da7
39b8583
78b6da7
b837a19
 
 
44c7d57
d2dcd28
 
 
44c7d57
d2dcd28
1cf6d2d
 
 
d2dcd28
 
 
 
 
 
468741a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

# SimXRD-4M

+ GitHub : https://github.com/Bin-Cao/SimXRD
+ [OneDrive](https://onedrive.live.com/?id=5D8626238470B49E%21s5d530eecddcf47b8b1b4a20f5e0def16&cid=5D8626238470B49E&redeem=aHR0cHM6Ly8xZHJ2Lm1zL2YvYy81ZDg2MjYyMzg0NzBiNDllL0V1d09VMTNQM2JoSHNiU2lEMTRON3hZQmZCTEdCYTFjX0VhVkhrbGZUajRxZXc%5FZT0xa3liaFg) Data backup
  
## Introduction
The SimXRD database is a comprehensive resource for spectral data analysis, designed to facilitate the identification of crystal materials both **in** and **out** library.

## Version V1.0.0 (May 2024)

This version introduces datasets for both **In Library (IL)** and **Out Library (OL)** identification.

### In Library (IL) Identification

- **Train Dataset (Part One)**: [ILtrainV1_P1](https://huggingface.co/datasets/AI4Spectro/ILtrainV1_P1) DOI:10.57967/hf/2878
- **Train Dataset (Part Two)**: [ILtrainV1_P2](https://huggingface.co/datasets/AI4Spectro/ILtrainV1_P2) DOI:10.57967/hf/2879
- **Validation Dataset**: [ILvalV1](https://huggingface.co/datasets/AI4Spectro/ILvalV1) DOI:10.57967/hf/2880
- **Test Dataset**: [ILtestV1](https://huggingface.co/datasets/AI4Spectro/ILtestV1) DOI:10.57967/hf/2881

### Crystal Data
If you need the organized crystal database, visit here: https://huggingface.co/datasets/caobin/CrystDB

### Out Library (OL) Identification

- **Train Dataset**: [OLtrainV1](https://huggingface.co/datasets/AI4Spectro/OLtrainV1) DOI:10.57967/hf/2877
- **Validation Dataset**: [OLvalV1](https://huggingface.co/datasets/AI4Spectro/OLvalV1) DOI:10.57967/hf/2876
- **Test Dataset**: [OLtestV1](https://huggingface.co/datasets/AI4Spectro/OLtestV1) DOI:10.57967/hf/2875

## Check Dataset

To check the dataset, you can use the following command:

```bash
pip install ase

ase db {name}.db
```

---

### Notes:
- Ensure you replace `{name}` with the appropriate dataset name when using the `ase db` command.