Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,10 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
20 |
model_path = "MeissonFlow/Meissonic"
|
21 |
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer")
|
22 |
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
|
23 |
-
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
|
|
|
|
|
|
|
24 |
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
|
25 |
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
26 |
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
|
|
|
20 |
model_path = "MeissonFlow/Meissonic"
|
21 |
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer")
|
22 |
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
|
23 |
+
# text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
|
24 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained( #more stable sampling for some cases
|
25 |
+
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
26 |
+
)
|
27 |
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
|
28 |
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
29 |
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
|